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Chern-Simons effective action: bulk and edge
Transport due to chiral and gravitational anomalies
Wen-Zee term, ‘orbital spin’ and Hall viscosity

Orbital spin at the edge and its universality



Edge excitations

Incompressible fluid
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Fermi surface
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edge ~ Fermi surface: linearize energy  €(k) —er =vk = gn, ne€Z

relativistic field theory in (1+1) dimensions with chiral excitations (X.6.Wen, '89)

mmmp Weyl fermion (non interacting) v =1

m==) Interacting fermion v = chiral boson (Luttinger liquid)
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Chern-Simons action & Hall Current
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Introduce Wen's hydrodynamic matter field a, and current j" = %5“ POva,
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Hall current is topological
Sources of a, field are anyons
Needs boundary action  Svl¢], auly =0.p ==  chiral boson CFT

Bulk topological theory is fantamount to conformal field theory on boundary



Boundary CFT and chiral anomaly

edge states are chiral fermions/bosons

g

chiral anomaly: boundary charge is not conserved

bulk (B) and boundary (b) compensate: anomaly inflow m

&-Ji +0ip=0, — j{dCIJJB + 0;Qp =0

R
adiabatic flux insertion (Laughlin)
®(t): 0= ndg, H[® +n®o] = H[®], n=1,2,... spectral flow
Qr — Qr + AQy, AQp = / %dm@tp——/]—‘—un
edge chiral anomaly: =mssp exact quantization of the Hall current
==mp Universal transport coefficient | oy = %

==mp bulk-boundary correspondence




Thermal current and gravitational anomaly

gravitational anomaly in the chiral edge theory (c,c¢), c#¢

D*T,, = —iDzR, z=x'+iz* (+h.c. for¢)

Casimir energy and ‘Casimir matter current’

Eo(T) ~ (T.z + Tzz)T, I (T) ~ Tz — Tzz)1s
% m=mp specific heat and thermal current
unbalanced edges  AJy = J\V — g2 = kAT K= % (¢ — &)

(Read, Green '00; A.C., Huerta, Zemba '02)
It has been measured (Heiblum et al. '14-'19; Wang et al. '18)

bulk-boundary correspondence: gravitational Chern-Simons action

—C 2
Sgrav|g] = 6967r /Tr (Fdl“ + §F3> : gur metric background in (2+1)-d  p,v =0,1,2

(Stone '12; Gromov et al. '15)



Wen-Zee-Fraohlich action

* consider spatial metric gij only and corresponding O(2) spin connection w,,

gij = €5 €5, Wfbb = w,(e)e®, i,j,a,b=1,2, 0gi; = O;juj + Oju;  strain
1 1 , v 2
Swzla,A,gl= — | ——ada+j - (A+sw) — Swzl|A, gl = — | AdA+ 2s Adw + s~ wdw
2T 2v A7
0S v S
=4 T o (B + 573) Wen-Zee shift | N =vNg+rvsx
0S noa . . . . .
Tij = _25970' = 5 Cikdjk (2 ¢ J) Hall viscosity Ny = %
* NH further transport coefficient (Avron et al., Read et al.)

* 5 electron ‘orbital spin’,e.g. s =n+ 1 onn-th Landau level



Hall viscosity

"H :
1ij = —€(ikGj)k

* Constant stirring creates an orthogonal static force, non dissipative



I's Hall viscosity universal?

If YES:
- further universal ‘geometric’ fransport coefficient 7y o< s orbital spin
- suggests that ‘composite fermion’ excitations are extended objects

=) renewed interest, following Haldane, Read, D.T. Son, Wiegmann,...

BUT: s is not related to an anomaly!

how to understand?

A: study quantities related to s in the edge CFT and check universality



Bulk-boundary correspondence for s

add boundary terms to the Wen-Zee action (Gromov, Jensen, Abanov '16)

_ v 2 v 2
SWZ_47T/M (QSA—I—S w)dw+47r - (23A+8 w)K

K = K;dz' extrinsic curvature needed for Euler characteristic x =2—-2g—b

predicts ground-state values for charge and spin in the edge CFT

Qo=vs So = ——

BUT:
- g-s values are not universal, can be tuned to zero (~ local terms in the 2d action)

- which boundary conditions?

- bulk non-universality: this action suggests that islands with different s values
can be made in the bulk without closing the gap




Orbital spin at the edge

(AC, Maffi " 18)
Explicitly study of Landau levels for integer filling v=mn, (s=n+1)

limit to the edge: momentum m = O(L) and radius » = O(R), L= R?—

wavefunctions of level n are gaussian-localized at » = R 4 x with spread Az = O(1)

1 k+n E4+n\”
wn,L—i-k:(R—'—xne)NﬁHn (SE‘— IR )eXp [_ (.CC— IR )

shift outward by 4z = n/2R is absent for straight boundary (extrinsic curvature)

mmmp oOrbital spin s=n+s, i.e.uptoconst.

wavefunctions pushed up in confining potential acquire
higher energy for higher Landau levels




Fermion CFT at the edge

* n-th level branch is displaced by O(n/R)

n v n n
H™ = 7 Z (K — n) a,gn)Ta,in) :
kn€Z

* Can be accounted for by chemical potential

* how to fill the Fermi sea?

- fop: least energy (smooth boundary)

- bottom: same momentum (sharp boundary)




* analyze the cases:
i) single branch
=== no physical effect of orbital spin s

ii) left: independent (non-interacting) branches, as e.g. integer Hall effect, or
connected to a reservoir (u, = eV,, Vn)

mmmp no effect of s

iii) right: overlapping (interacting) branches, e.g. sharp boundary & hierarchical
Hall states, for isolated Hall droplets

mmmdp differences s, —s; € Z are observable and universal



Excited state w.r.t. standard CFT ground state

Qo = Zz = VS + const.
i

-9 _2
So :Z% — V% + const.

agreement with WZ action (up to const.)
orbital spins identified up fo const.  si — si + S,
Results extend to fractional (hierarchical) filling in the bosonic CFT

How to measure?

By Coulomb blockade (funneling in a isolated droplet at zero bias)

AQ A

quadrupole
deformation

=)

<

Squeeze area by o AP = P,



Conclusions

charge and heat currents are associated to anomalies of the edge theory
=mmp Universal transport coefficients

Hall viscosity, proportional o average orbital spin 5 is not universal

differences of orbital spin s; — s; € Z are universal and can be observed

with edge physics in isolated Hall droplets

possible experiment: Coulomb blockade in the isolated droplet with quadrupole
deformation

Not discussed

extension of analysis to fractional fillings by using area-preserving
diffeomorphisms (W-infinity algebra)

other physical effects of orbital spin for QHE on a conical surface
(metric singularities are sources of s) (Laskin, Chiu, Can, Wiegmann '16-'18)



Quantum incompressible fluids

* Area-preserving diffeomorphisms of incompressible fluids

/anc p(r) =N = p,A —— A = constant

* Fluctuations of the fluid are described by diffs, generated by Poisson brackets

classical 02 = 1% wip, 0Z2=1Z,wip ey 0p(z,2) = {p,w}p
quantum  9P(%,2) = iQ[p, @][2) = {p,w}n Moyal brackets

- Woo glgebra (GMP sin-algebra)

0
* Fully understood in the edge CFT # — S reproduces/predicts Jain hierarchy
— W minimal models (A.C., Trugenberger, Zemba '96)




Bulk fluctuations in lowest Landau level are non-local:

A P
5p(2.2) = QY [3,8][0) = i Y o |2 2w — O2p O
n=1 (Iso, Karabali, Sakita)

can be expressed in terms of fields of increasing spin, traceless & symmetric

dp = % s (pO,w) + 52 (pOZw) + -+ + h.c.

— i0sa, + %8§bzz+ +h.c
e oa L by (0=0,1,2, k=1,2)
Recover Wen hydrodynamic field %~ plus 7 correction “wk =552 =5
a, = (CLO, Ay, CL;), buk — (bOZa bOZ? bzz: bZE) bZZ) sz) + gauge Symmetr‘y
jM:j(ﬂl)‘i‘jé)‘i"“a jé‘l):&‘“”payap, ap%ap—i—apf
. 1 .
jé) = Eé‘“ 0,0k bpk, bpk; — bpk; + 8pvk

Spin-one and spin-two fields parameterize matter fluctuations
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