Universal Transport Properties in the Quantum Hall Effect

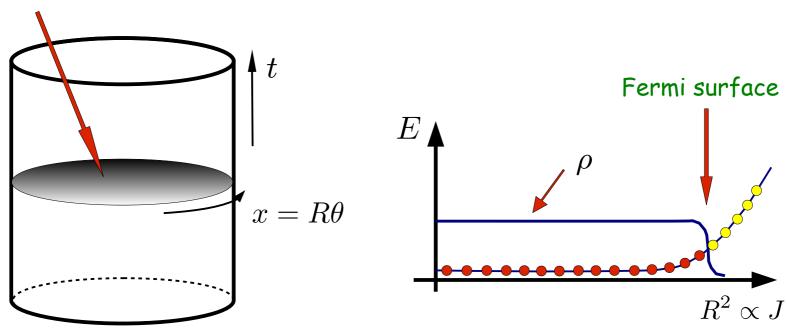
Andrea Cappelli (INFN & Florence Univ.) with L. Maffi (Florence Univ.)

<u>Outline</u>

- Chern-Simons effective action: bulk and edge
- Transport due to chiral and gravitational anomalies
- Wen-Zee term, 'orbital spin' and Hall viscosity
- Orbital spin at the edge and its universality

Edge excitations

Incompressible fluid



edge ~ Fermi surface: linearize energy $\qquad \varepsilon(k) - \varepsilon_F = vk = \frac{v}{R}n, \quad n \in \mathbb{Z}$

relativistic field theory in (1+1) dimensions with chiral excitations (X.G.Wen, '89)

- Weyl fermion (non interacting) $\nu = 1$
- Interacting fermion $u = \frac{1}{k}$ chiral boson (Luttinger liquid)

Chern-Simons action & Hall Current

$$S\left[A\right] = \frac{\nu}{4\pi} \int A dA = \frac{\nu}{4\pi} \int \varepsilon^{\mu\nu\rho} A_{\mu} \partial_{\nu} A_{\rho} \qquad \qquad \text{Laughlin state} \qquad \nu = \frac{1}{k} = 1, \frac{1}{3}, \dots$$

$$ho=rac{\delta S}{\delta A_0}=rac{
u}{2\pi}\mathcal{B}$$
 Density $J^i=rac{\delta S}{\delta A_i}=rac{
u}{2\pi}arepsilon^{ij}\mathcal{E}^j$ Hall current

Introduce Wen's hydrodynamic matter field a_μ and current $j^\mu=rac{1}{2\pi}arepsilon^{\mu
u
ho}\partial_
u a_
ho$

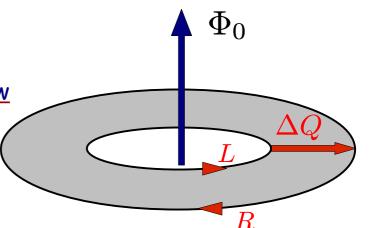
$$S[a,A] = \int -\frac{1}{4\pi\nu} ada + A \cdot j \qquad \longrightarrow \qquad S[A] = \frac{\nu}{4\pi} \int AdA$$

- Hall current is topological
- Sources of a_{μ} field are anyons
- Needs boundary action $S_b\left[\varphi\right], \ a_\mu|_b = \partial_\mu \varphi$ chiral boson CFT
- Bulk topological theory is tantamount to conformal field theory on boundary

Boundary CFT and chiral anomaly

- edge states are chiral fermions/bosons
- chiral anomaly: boundary charge is not conserved
- bulk (B) and boundary (b) compensate: anomaly inflow

$$\partial_i J^i + \partial_t \rho = 0, \ \to \ \oint dx J_B + \partial_t Q_b = 0$$



 $\sigma_H = \frac{\nu}{2\pi}$

adiabatic flux insertion (Laughlin)

$$\Phi(t): \ 0 \to \ n \, \Phi_0, \qquad H[\Phi + n \, \Phi_0] = H[\Phi], \quad n = 1, 2, \dots$$
 spectral flow

$$Q_R \to Q_R + \Delta Q_b,$$
 $\Delta Q_b = \int_{-\infty}^{+\infty} dt \oint dx \ \partial_t \rho = \frac{\nu}{2\pi} \int \mathcal{F} = \nu \, n$

edge chiral anomaly: exact quantization of the Hall current

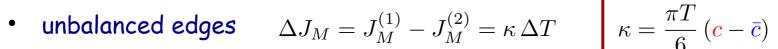
Thermal current and gravitational anomaly

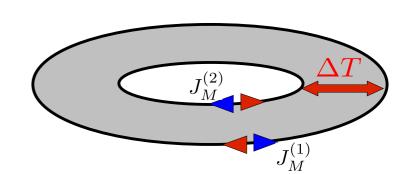
gravitational anomaly in the chiral edge theory $(c, \bar{c}), c \neq \bar{c}$

$$D^z \mathcal{T}_{zz} = -\frac{c}{24} D_z \mathcal{R}, \quad z = x^1 + i x^2, \quad (+ \text{h.c. for } \bar{c})$$

Casimir energy and 'Casimir matter current'

$$E_0(T) \sim \langle \mathcal{T}_{zz} + \mathcal{T}_{\bar{z}\bar{z}} \rangle_T, \qquad J_M(T) \sim \langle \mathcal{T}_{zz} - \mathcal{T}_{\bar{z}\bar{z}} \rangle_T,$$





$$\kappa = \frac{\pi T}{6} \left(\mathbf{c} - \bar{\mathbf{c}} \right)$$

(Read, Green '00; A.C., Huerta, Zemba '02)

- It has been measured (Heiblum et al. '14-'19; Wang et al. '18)
- bulk-boundary correspondence: gravitational Chern-Simons action

$$S_{
m grav}[g]=rac{{m c}-ar c}{96\pi}\int{
m Tr}\left(\Gamma d\Gamma+rac{2}{3}\Gamma^3
ight), \qquad g_{\mu
u} \quad {
m metric\ background\ in\ (2+1)-d} \quad \mu,
u=0,1,2$$

(Stone '12; Gromov et al. '15)

Wen-Zee-Fröhlich action

consider spatial metric g_{ij} only and corresponding O(2) spin connection ω_{μ}

$$g_{ij}=e^a_ie^a_j,\quad \omega^{ab}_\mu=\omega_\mu(e)\varepsilon^{ab},\quad i,j,a,b=1,2,\qquad \qquad \delta g_{ij}=\partial_iu_j+\partial_ju_i\quad {\sf strain}$$

$$\delta g_{ij} = \partial_i u_j + \partial_j u_i$$
 strair

$$S_{WZ}\left[a,A,g\right] = \frac{1}{2\pi} \int -\frac{1}{2\nu} a da + j \cdot (A + s\omega) \rightarrow S_{WZ}\left[A,g\right] = \frac{\nu}{4\pi} \int A dA + \frac{2s}{4\pi} A d\omega + \frac{s^2}{4\pi} \omega d\omega$$

$$\rho = \frac{\delta S}{A_0} = \frac{\nu}{2\pi} \left(B + \frac{s}{2} \mathcal{R} \right)$$

$$T_{ij} = -2rac{\delta S}{\delta g^{ij}} = rac{\eta_H}{2} arepsilon_{ik} \dot{g}_{jk} + (i \leftrightarrow j)$$
 Hall viscosity $\eta_H = rac{
ho_0 s}{2}$

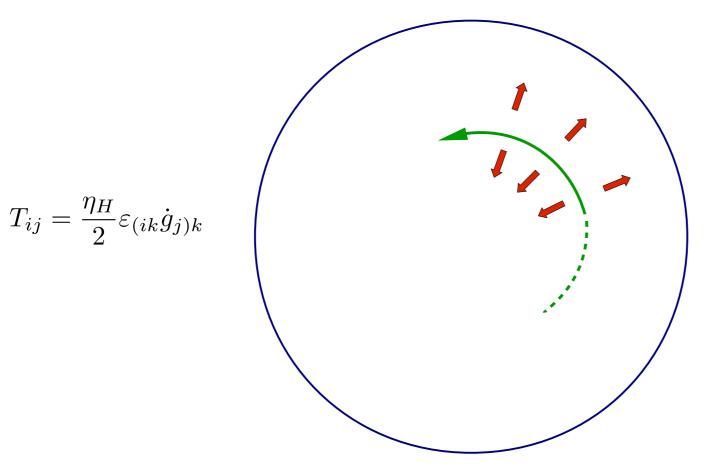
$$\eta_H = \frac{\rho_0 s}{2}$$

• η_H further transport coefficient

(Avron et al., Read et al.)

 $oldsymbol{s}$ electron 'orbital spin', e.g. $oldsymbol{s}=n+rac{1}{2}$ on n-th Landau level

Hall viscosity



• Constant stirring creates an orthogonal static force, non dissipative

Is Hall viscosity universal?

- If YES:
 - further universal 'geometric' transport coefficient $\,\eta_H \propto s\,$ orbital spin
 - suggests that 'composite fermion' excitations are extended objects
 - renewed interest, following Haldane, Read, D.T. Son, Wiegmann,...
- BUT: s is not related to an anomaly!
- how to understand?

A: study quantities related to s in the edge CFT and check universality

Bulk-boundary correspondence for s

add boundary terms to the Wen-Zee action

(Gromov, Jensen, Abanov '16)

$$S_{WZ} = \frac{\nu}{4\pi} \int_{\mathcal{M}} \left(2sA + s^2 \omega \right) d\omega + \frac{\nu}{4\pi} \int_{\partial \mathcal{M}} \left(2sA + s^2 \omega \right) K$$

 $K=K_idx^i$ extrinsic curvature needed for Euler characteristic $\chi=2-2g-b$

predicts ground-state values for charge and spin in the edge CFT

$$Q_0 = \nu \, \mathbf{s} \qquad \mathcal{S}_0 = \frac{\nu \mathbf{s}^2}{2}$$

- BUT:
 - g-s values are not universal, can be tuned to zero (~ local terms in the 2d action)
 - which boundary conditions?
 - <u>bulk non-universality</u>: this action suggests that islands with different s values can be made in the bulk without closing the gap

Orbital spin at the edge

(AC, Maffi `18)

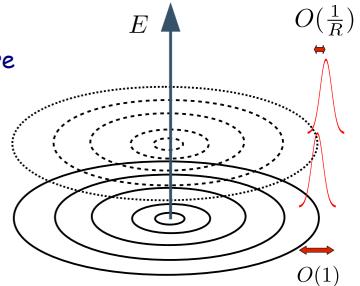
- Explicitly study of Landau levels for integer filling $u=n, \ (s=n+rac{1}{2})$
- limit to the edge: momentum m=O(L) and radius $r=O(R), \quad L=R^2\to\infty$
- wavefunctions of level n are gaussian-localized at r=R+x with spread $\Delta x=O(1)$

$$\psi_{n,L+k}(R+x,\theta) \sim \frac{1}{\sqrt{R}} H_n \left(x - \frac{k+n}{2R} \right) \exp \left[-\left(x - \frac{k+n}{2R} \right)^2 \right]$$

• shift outward by $\delta x = n/2R$ is absent for straight boundary (extrinsic curvature)

orbital spin $s = n + s_o$ i.e. up to const.

 wavefunctions pushed up in confining potential acquire higher energy for higher Landau levels

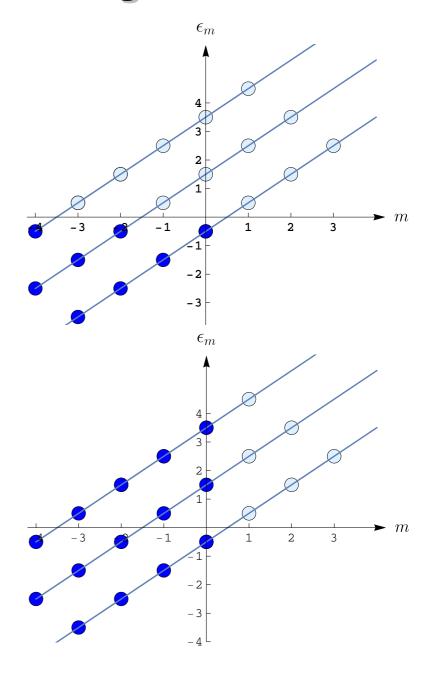


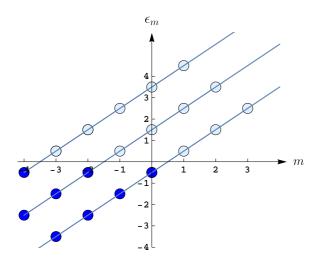
Fermion CFT at the edge

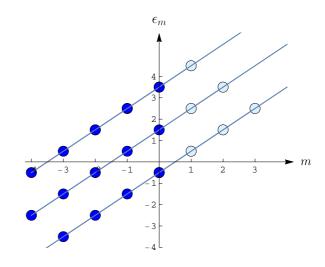
• n-th level branch is displaced by O(n/R)

$$H^{(n)} = \frac{v}{R} \sum_{k_n \in \mathbb{Z}} (k_n - \mu_n) : a_{k_n}^{(n)\dagger} a_{k_n}^{(n)} :$$

- Can be accounted for by chemical potential shifts $\mu_n = -n + \mu_o$
- how to fill the Fermi sea?
 - top: <u>least energy</u> (smooth boundary)
 - bottom: <u>same momentum</u> (sharp boundary)







- analyze the cases:
 - i) single branch
 - \longrightarrow no physical effect of orbital spin s
 - ii) left: independent (non-interacting) branches, as e.g. integer Hall effect, or connected to a reservoir ($\mu_n = eV_o$, $\forall n$)
 - \longrightarrow no effect of s
 - iii) right: overlapping (interacting) branches, e.g. sharp boundary & hierarchical Hall states, for isolated Hall droplets
 - igwedge differences $s_i-s_i\in\mathbb{Z}$ are observable and universal

Excited state w.r.t. standard CFT ground state

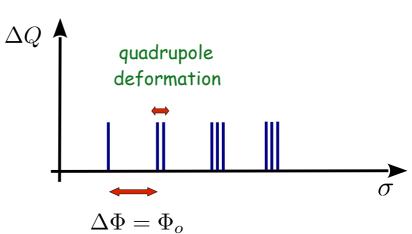
$$Q_0 = \sum_i i = \nu \overline{s} + \text{const.}$$

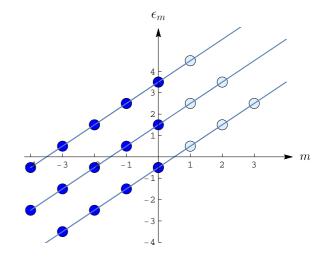
$$S_0 = \sum_i \frac{i^2}{2} = \frac{\nu \overline{s^2}}{2} + \text{const.}$$

- Results extend to fractional (hierarchical) filling in the bosonic CFT
- How to measure?
- By Coulomb blockade (tunneling in a isolated droplet at zero bias)



Squeeze area by $\,\sigma\,$





Conclusions

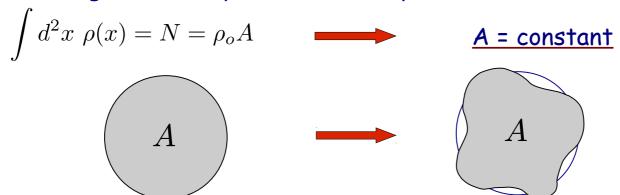
- charge and heat currents are associated to anomalies of the edge theory
 universal transport coefficients
- Hall viscosity, proportional to average orbital spin \overline{s} is not universal
- differences of orbital spin $s_i-s_i\in\mathbb{Z}$ are <u>universal</u> and can be observed with edge physics in isolated Hall droplets
- possible experiment: Coulomb blockade in the isolated droplet with quadrupole deformation

Not discussed

- extension of analysis to fractional fillings by using area-preserving diffeomorphisms (W-infinity algebra)
- other physical effects of orbital spin for QHE on a conical surface (metric singularities are sources of s) (Laskin, Chiu, Can, Wiegmann '16-'18)

Quantum incompressible fluids

Area-preserving diffeomorphisms of incompressible fluids



Fluctuations of the fluid are described by diffs, generated by Poisson brackets

classical $\delta z = \{z,w\}_P$, $\delta \bar{z} = \{\bar{z},w\}_P$ $\delta \rho(z,\bar{z}) = \{\rho,w\}_P$ quantum $\delta \rho(z,\bar{z}) = i\langle \Omega | [\widehat{\rho},\widehat{w}] | \Omega \rangle = \{\rho,w\}_M$ Moyal brackets W_∞ algebra (GMP sin-algebra)

• Fully understood in the edge CFT $z \to e^{i\theta}$ It reproduces/predicts Jain hierarchy W_{∞} minimal models (A.C., Trugenberger, Zemba '96)

• Bulk fluctuations in lowest Landau level are non-local:

$$\delta\rho(z,\bar{z}) = i\langle\Omega|\left[\widehat{\rho},\widehat{w}\right]|\Omega\rangle = i\sum_{n=1}^{\infty} \frac{\hbar^n}{B^n n!} \left[\partial_{\bar{z}}^n \rho \ \partial_z^n w \ - \ \partial_z^n \rho \ \partial_{\bar{z}}^n w\right]$$

(Iso, Karabali, Sakita)

can be expressed in terms of fields of increasing spin, traceless & symmetric

$$\delta \rho = \frac{i}{B} \partial_{\bar{z}} (\rho \partial_z w) + \frac{i}{2B^2} \partial_{\bar{z}}^2 (\rho \partial_z^2 w) + \dots + \text{h.c.}$$
$$= i \partial_{\bar{z}} a_z + \frac{i}{B} \partial_{\bar{z}}^2 b_{zz} + \dots + \text{h.c.}$$

• Recover Wen hydrodynamic field a_{μ} plus $\frac{1}{B}$ correction $b_{\mu k}$ $(\mu=0,1,2,\ k=1,2)$

$$a_{\mu}=(a_0,a_z,a_{\overline{z}}), \qquad b_{\mu k}=(b_{0z},b_{0\overline{z}},\textcolor{red}{b_{zz}},\textcolor{red}{b_{$$

· Spin-one and spin-two fields parameterize matter fluctuations