Color
Superconductivity in High Density QCD

Roberto Casalbuoni

Department of Physics and INFN - Florence

Bari, September 29 – October 1, 2004
Motivations for the study of high-density QCD:

- Understanding the interior of CSO’s
- Study of the QCD phase diagram at $T\sim 0$ and high μ

Asymptotic region in μ fairly well understood: existence of a CS phase. Real question: does this type of phase persists at relevant densities ($\sim 5-6 \rho_0$)?
Summary

- Mini review of CFL and 2SC phases
- Pairing of fermions with different Fermi momenta
- The gapless phases g2SC and gCFL
- The LOFF phase and its phonons
Study of CS back to 1977 (Barrois 1977, Frautschi 1978, Bailin and Love 1984) based on Cooper instability:

At \(T \sim 0 \) a degenerate fermion gas is unstable

Any weak attractive interaction leads to Cooper pair formation

- Hard for electrons (Coulomb vs. phonons)
- Easy in QCD for di-quark formation (attractive channel \(3 \))
 \[3 \otimes 3 = 3 \oplus 6 \]
In QCD, CS easy for large μ due to asymptotic freedom

At high μ, $m_s, m_d, m_u \sim 0$, 3 colors and 3 flavors

Possible pairings: $\langle 0 | \psi_{i\alpha} \psi_{j\beta} | 0 \rangle$

- Antisymmetry in color (α, β) for attraction
- Antisymmetry in spin (a,b) for better use of the Fermi surface
- Antisymmetry in flavor (i, j) for Pauli principle
Favorite state **CFL** (color-flavor locking)
(Alford, Rajagopal & Wilczek 1999)

\[
\langle 0 | \psi^\alpha_{aL} \psi^\beta_{bL} | 0 \rangle = -\langle 0 | \psi^\alpha_{aR} \psi^\beta_{bR} | 0 \rangle = \Delta \varepsilon^{\alpha\beta\epsilon} \varepsilon_{ab\epsilon}
\]

Symmetry breaking pattern

\[SU(3)_c \otimes SU(3)_L \otimes SU(3)_R \Rightarrow SU(3)_{c+L+R}\]
What happens going down with μ? If $\mu \ll m_s$ we get 3 colors and 2 flavors (2SC)

$$\langle 0 | \psi^\alpha_{aL} \psi^\beta_{bL} | 0 \rangle = \Delta \varepsilon^{\alpha\beta 3} \varepsilon_{ab}$$

$\text{SU}(3)_c \otimes \text{SU}(2)_L \otimes \text{SU}(2)_R \Rightarrow \text{SU}(2)_c \otimes \text{SU}(2)_L \otimes \text{SU}(2)_R$

But what happens in real world?
- M_s not zero
- Neutrality with respect to em and color
- Weak equilibrium

(No free energy cost in neutral \rightarrow singlet, Amore et al. 2003)

All these effects make Fermi momenta of different fermions unequal causing problems to the BCS pairing mechanism
Consider 2 fermions with $m_1 = M$, $m_2 = 0$ at the same chemical potential μ. The Fermi momenta are

$$p_{F1} = \sqrt{\mu^2 - M^2} \quad \quad \quad \quad p_{F2} = \mu$$

Effective chemical potential for the massive quark

$$\mu_{eff} = \sqrt{\mu^2 - M^2} \approx \mu - \frac{M^2}{2\mu}$$

Mismatch:

$$\delta \mu \approx \frac{M^2}{2\mu}$$
If electrons are present, weak equilibrium makes chemical potentials of quarks of different charges unequal:

\[d \rightarrow u e \bar{\nu} \quad \Rightarrow \quad \mu_d - \mu_u = \mu_e \]

In general we have the relation: \((\mu_i = \mu + Q \mu_Q)\)

\[\mu_e = -\mu_Q \]

N.B. \(\mu_e \) is not a free parameter
Neutrality requires:
\[
\frac{\partial V}{\partial \mu_e} = -Q = 0
\]

Example 2SC: normal BCS pairing when

\[
\mu_u = \mu_d \Rightarrow n_u = n_d
\]

But neutral matter for

\[
n_d \approx 2n_u \Rightarrow \mu_d \approx 2^{1/3} \mu_u \Rightarrow \mu_e = \mu_d - \mu_u \approx \frac{1}{4} \mu_u \neq 0
\]

Mismatch:
\[
\delta \mu = \frac{p_F^d - p_F^u}{2} = \frac{\mu_d - \mu_u}{2} = \frac{\mu_e}{2} \approx \frac{\mu_u}{8} \neq 0
\]
Also color neutrality requires

$$\frac{\partial V}{\partial \mu_3} = T_3 = 0, \quad \frac{\partial V}{\partial \mu_8} = T_8 = 0$$

As long as $\delta \mu$ is small no effects on BCS pairing, but when increased the BCS pairing is lost and two possibilities arise:

- The system goes back to the normal phase
- Other phases can be formed
In a simple model with two fermions at chemical potentials $\mu + \delta\mu$, $\mu - \delta\mu$ the system becomes normal at the Chandrasekhar-Clogston point. Another unstable phase exists.

$$\delta\mu = \Delta_{\text{BCS}}$$

$$\delta\mu_1 = \frac{\Delta_{\text{BCS}}}{\sqrt{2}}$$
The point $|\delta\mu| = \Delta$ is special. In the presence of a mismatch new features are present. The spectrum of quasiparticles is

$$E(p) = \left| \delta\mu \pm \sqrt{(p - \mu)^2 + \Delta^2} \right|$$

For $|\delta\mu| < \Delta$, the gaps are $\Delta - \delta\mu$ and $\Delta + \delta\mu$. For $|\delta\mu| = \Delta$, an unpairing (blocking) region opens up and gapless modes are present.

Energy cost for pairing $2\delta\mu$ begins to unpair $2\delta\mu > 2\Delta$

Energy gained in pairing 2Δ
Same structure of condensates as in 2SC

(Huang & Shovkovy, 2003)

4x3 fermions:
- 2 quarks **ungapped** q_{ub}, q_{db}
- 4 quarks **gapped** q_{ur}, q_{ug}, q_{dr}, q_{dg}

General strategy (NJL model):

- Write the free energy:

\[
V(\mu, \mu_3, \mu_8, \mu_e, \Delta)
\]

- Solve:

\[
\frac{\partial V}{\partial \mu_e} = \frac{\partial V}{\partial \mu_3} = \frac{\partial V}{\partial \mu_8} = 0
\]

Neutrality

\[
\frac{\partial V}{\partial \Delta} = 0
\]

Gap equation
• For $|\delta \mu| > \Delta$ ($\delta \mu = \mu_e / 2$) 2 gapped quarks become gapless. The gapless quarks begin to unpair destroying the BCS solution. But a new stable phase exists, the gapless 2SC (g2SC) phase.

• It is the unstable phase which becomes stable in this case (and CFL, see later) when charge neutrality is required.
solutions of the gap equation

\[\mu_e = \text{const.} \]

Normal state

\[Q = 0 \]

neutrality line

\[\frac{\mu_e}{2} = \Delta \]

gap equation

\[\mu_e = 148 \text{ MeV} \]

\[V(\text{GeV/fm}^3) \]

\[\Delta(\text{MeV}) \]

\[V(\text{GeV/fm}^3) \]

\[\Delta(\text{MeV}) \]
• But evaluation of the gluon masses (5 out of 8 become massive) shows an instability of the g2SC phase. Some of the gluon masses are imaginary (Huang and Shovkovy 2004).

• Possible solutions are: gluon condensation, or another phase takes place as a crystalline phase (see later), or this phase is unstable against possible mixed phases.

• Potential problem also in gCFL (calculation not yet done).
Generalization to 3 flavors

\[
\langle 0 | \psi_\alpha^a \psi_\beta^b | 0 \rangle = \Delta_1 \varepsilon_{\alpha\beta}^{ab1} \varepsilon_{ab1} + \Delta_2 \varepsilon_{\alpha\beta}^{ab2} \varepsilon_{ab2} + \Delta_3 \varepsilon_{\alpha\beta}^{ab3} \varepsilon_{ab3}
\]

Different phases are characterized by different values for the gaps. For instance (but many other possibilities exist)

CFL: \(\Delta_1 = \Delta_2 = \Delta_3 = \Delta \)

g2SC: \(\Delta_3 \neq 0, \Delta_1 = \Delta_2 = 0 \)

gCFL: \(\Delta_3 > \Delta_2 > \Delta_1 \)
<table>
<thead>
<tr>
<th>(G)</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>-1</th>
<th>+1</th>
<th>-1</th>
<th>+1</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>ru</td>
<td></td>
<td></td>
<td></td>
<td>ru</td>
<td>gd</td>
<td>bs</td>
<td>rd</td>
<td>gu</td>
<td>rs</td>
</tr>
<tr>
<td>gd</td>
<td>(\Delta_3)</td>
<td>(\Delta_1)</td>
<td></td>
<td>gd</td>
<td>bs</td>
<td>rd</td>
<td>gu</td>
<td>rs</td>
<td>bu</td>
</tr>
<tr>
<td>bs</td>
<td>(\Delta_2)</td>
<td>(\Delta_1)</td>
<td></td>
<td>bs</td>
<td>rd</td>
<td>gu</td>
<td>rs</td>
<td>bu</td>
<td>gs</td>
</tr>
<tr>
<td>rd</td>
<td></td>
<td></td>
<td></td>
<td>rd</td>
<td>bs</td>
<td>rd</td>
<td>gu</td>
<td>rs</td>
<td>bu</td>
</tr>
<tr>
<td>gu</td>
<td></td>
<td></td>
<td></td>
<td>gu</td>
<td>rd</td>
<td>gu</td>
<td>rs</td>
<td>bu</td>
<td>gs</td>
</tr>
<tr>
<td>rs</td>
<td></td>
<td></td>
<td></td>
<td>rs</td>
<td>gu</td>
<td>rs</td>
<td>bu</td>
<td>gs</td>
<td>bd</td>
</tr>
<tr>
<td>bu</td>
<td></td>
<td></td>
<td></td>
<td>bu</td>
<td>rs</td>
<td>bu</td>
<td>gs</td>
<td>bd</td>
<td></td>
</tr>
<tr>
<td>gs</td>
<td></td>
<td></td>
<td></td>
<td>gs</td>
<td>bu</td>
<td>gs</td>
<td>bd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bd</td>
<td></td>
<td></td>
<td></td>
<td>bd</td>
<td>gs</td>
<td>bd</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Gaps in gCFL
Strange quark mass effects:

- **Shift of the chemical potential for the strange quarks:**
 \[\mu_{\alpha s} \Rightarrow \mu_{\alpha s} - \frac{M_s^2}{2\mu} \]

- **Color and electric neutrality in CFL requires**
 \[\mu_8 = -\frac{M_s^2}{2\mu}, \quad \mu_3 = \mu_e = 0 \]

- **gs-bd unpairing catalyzes CFL to gCFL**
 \[\delta \mu_{bd-gs} = \frac{1}{2} (\mu_{bd} - \mu_{gs}) = -\mu_8 = \frac{M_s^2}{2\mu} \]

 \[\delta \mu_{rd-gu} = \mu_e, \quad \delta \mu_{rs-bu} = \mu_e - \frac{M_s^2}{2\mu} \]
It follows:

\[
\frac{M^2}{\mu} \quad \text{Energy cost for pairing} \quad \text{begins to unpair} \quad \frac{M^2}{\mu} > 2\Delta \\
2\Delta \quad \text{Energy gained in pairing}
\]

Again, by using NJL model (modelled on one-gluon exchange):

- Write the free energy: \(V(\mu, \mu_3, \mu_8, \mu_e, M_s, \Delta_i) \)
- Solve:

Neutrality \(\frac{\partial V}{\partial \mu_e} = \frac{\partial V}{\partial \mu_3} = \frac{\partial V}{\partial \mu_8} = 0 \)

Gap equations \(\frac{\partial V}{\partial \Delta_i} = 0 \)
• CFL ↔ gCFL 2nd order transition at $M_s^2/\mu \sim 2\Delta$, when the pairing gs-bd starts breaking

• gCFL has gapless quasiparticles. Interesting transport properties
gCFL has μ_e not zero, with charge cancelled by unpaired u quarks
● LOFF (Larkin, Ovchinnikov, Fulde & Ferrel, 1964): ferromagnetic alloy with paramagnetic impurities.

● The impurities produce a constant exchange field acting upon the electron spins giving rise to an effective difference in the chemical potentials of the opposite spins producing a mismatch of the Fermi momenta.
According to LOFF, close to first order point (CC point), possible condensation with \textbf{non zero total momentum}:

\[
\vec{p}_1 = \vec{k} + \vec{q} \quad \vec{p}_2 = -\vec{k} + \vec{q} \quad \rightarrow \quad \langle \psi(x)\psi(x) \rangle = \Delta e^{2i\vec{q} \cdot \vec{x}}
\]

More generally:

\[
\langle \psi(x)\psi(x) \rangle = \sum_m \Delta_m c_m e^{2i\vec{q}_m \cdot \vec{x}}
\]

\[
\vec{p}_1 + \vec{p}_2 = 2\vec{q}
\]

\[
|\vec{q}| \quad \text{fixed variationally}
\]

\[
\frac{\vec{q}}{|\vec{q}|} \quad \text{chosen spontaneously}
\]
Single plane wave:

\[E(\vec{p}) - \mu \rightarrow E(\pm \vec{p} + \vec{q}) - \mu \mp \delta\mu \approx \sqrt{(p - \mu)^2 + \Delta^2} \mp \bar{\mu} \]

\[\bar{\mu} = \delta\mu - \vec{v}_F \cdot \vec{q} \]

Also in this case, for \[|\bar{\mu}| = \delta\mu - \vec{v}_F \cdot \vec{q} < \Delta \]
a unpairing (blocking) region opens up and gapless modes are present.

Possibility of a crystalline structure (Larkin & Ovchinnikov 1964, Bowers & Rajagopal 2002)

\[\langle \psi(x)\psi(x) \rangle = \Delta \sum_{|\vec{q}_i| = 1.2\delta\mu} e^{2i\vec{q}_i \cdot \vec{x}} \]

The \(q_i \)'s define the crystal pointing at its vertices.
Crystalline structures in LOFF
The LOFF phase is studied via a Ginzburg-Landau expansion of the grand potential

$$\Omega = \alpha \Delta^2 + \frac{\beta}{2} \Delta^4 + \frac{\gamma}{3} \Delta^6 + \ldots$$

(for regular crystalline structures all the Δ_q are equal)

The coefficients can be determined microscopically for the different structures (Bowers and Rajagopal (2002))
Gap equation

Propagator expansion

Insert in the gap equation
We get the equation

\[\alpha \Delta + \beta \Delta^3 + \gamma \Delta^5 + \cdots = 0 \]

Which is the same as

\[\frac{\partial \Omega}{\partial \Delta} = 0 \]

with

\[\alpha \Delta = \quad \beta \Delta^3 = \quad \gamma \Delta^5 = \]

The first coefficient has universal structure, independent on the crystal. From its analysis one draws the following results.
\[\Omega_{\text{BCS}} - \Omega_{\text{normal}} = -\frac{\rho}{4}(\Delta_{\text{BCS}}^2 - 2\delta\mu^2) \]

\[\Omega_{\text{LOFF}} - \Omega_{\text{normal}} = -0.44\rho(\delta\mu - \delta\mu_2)^2 \]

\[\Delta_{\text{LOFF}} \approx 1.15(\delta\mu_2 - \delta\mu) \]

\[\delta\mu_1 = \Delta_{\text{BCS}} / \sqrt{2} \]

\[\delta\mu_2 \approx 0.754\Delta_{\text{BCS}} \]

Small window. Opens up in QCD?

(Leibovich, Rajagopal & Shuster 2001; Giannakis, Liu & Ren 2002)
Single plane wave

Critical line from

\[\frac{\partial \Omega}{\partial \Delta} = 0, \quad \frac{\partial \Omega}{\partial q} = 0 \]

Along the critical line

(at T = 0, q = 1.2\delta \mu_2)
<table>
<thead>
<tr>
<th>Structure</th>
<th>P</th>
<th>\mathcal{G}(Föppl)</th>
<th>$\bar{\beta}$</th>
<th>$\bar{\eta}$</th>
<th>$\bar{\Omega}_{\text{min}}$</th>
<th>$\delta \mu_\kappa / \Delta_\theta$</th>
</tr>
</thead>
<tbody>
<tr>
<td>point</td>
<td>1</td>
<td>$C_{\infty v}(1)$</td>
<td>0.569</td>
<td>1.637</td>
<td>0</td>
<td>0.754</td>
</tr>
<tr>
<td>antipodal pair</td>
<td>2</td>
<td>$D_{\infty v}(11)$</td>
<td>0.138</td>
<td>1.952</td>
<td>0</td>
<td>0.754</td>
</tr>
<tr>
<td>triangle</td>
<td>3</td>
<td>$D_{3h}(3)$</td>
<td>-1.976</td>
<td>1.687</td>
<td>-0.452</td>
<td>0.872</td>
</tr>
<tr>
<td>tetrahedron</td>
<td>4</td>
<td>$T_d(13)$</td>
<td>-5.727</td>
<td>4.350</td>
<td>-1.655</td>
<td>1.074</td>
</tr>
<tr>
<td>square</td>
<td>4</td>
<td>$D_{4h}(4)$</td>
<td>-10.350</td>
<td>-1.538</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>pentagon</td>
<td>5</td>
<td>$D_{5h}(5)$</td>
<td>-13.004</td>
<td>8.386</td>
<td>-5.211</td>
<td>1.607</td>
</tr>
<tr>
<td>trigonal bipyramid</td>
<td>5</td>
<td>$D_{3h}(131)$</td>
<td>-11.613</td>
<td>13.913</td>
<td>-1.348</td>
<td>1.085</td>
</tr>
<tr>
<td>square pyramid</td>
<td>5</td>
<td>$C_{4v}(14)$</td>
<td>-22.014</td>
<td>-70.442</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>octahedron</td>
<td>6</td>
<td>$O_h(141)$</td>
<td>-31.466</td>
<td>19.711</td>
<td>-13.365</td>
<td>3.625</td>
</tr>
<tr>
<td>trigonal prism</td>
<td>6</td>
<td>$D_{3h}(33)$</td>
<td>-35.018</td>
<td>-35.202</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>hexagon</td>
<td>6</td>
<td>$D_{6h}(6)$</td>
<td>23.669</td>
<td>6009.225</td>
<td>0</td>
<td>0.754</td>
</tr>
<tr>
<td>pentagonal bipyramid</td>
<td>7</td>
<td>$D_{5h}(151)$</td>
<td>-29.158</td>
<td>54.822</td>
<td>-1.375</td>
<td>1.143</td>
</tr>
<tr>
<td>capped trigonal antiprism</td>
<td>7</td>
<td>$C_{3v}(133)$</td>
<td>-65.112</td>
<td>-195.592</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>cube</td>
<td>8</td>
<td>$O_h(44)$</td>
<td>-110.757</td>
<td>-459.242</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>square antiprism</td>
<td>8</td>
<td>$D_{4d}(44)$</td>
<td>-57.363</td>
<td>-6.866</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>hexagonal bipyramid</td>
<td>8</td>
<td>$D_{6h}(161)$</td>
<td>-8.074</td>
<td>5595.528</td>
<td>-2.8 x 10^{-6}</td>
<td>0.755</td>
</tr>
<tr>
<td>augmented trigonal prism</td>
<td>9</td>
<td>$D_{3h}(333)$</td>
<td>-69.857</td>
<td>129.259</td>
<td>-3.401</td>
<td>1.656</td>
</tr>
<tr>
<td>capped trigonal prism</td>
<td>9</td>
<td>$C_{4v}(144)$</td>
<td>-95.529</td>
<td>7771.152</td>
<td>-0.0024</td>
<td>0.773</td>
</tr>
<tr>
<td>square prism</td>
<td>9</td>
<td>$C_{4v}(144)$</td>
<td>-68.025</td>
<td>106.362</td>
<td>-4.637</td>
<td>1.867</td>
</tr>
<tr>
<td>capped square antiprism</td>
<td>9</td>
<td>$C_{4v}(144)$</td>
<td>-14.298</td>
<td>7318.885</td>
<td>-9.1 x 10^{-6}</td>
<td>0.755</td>
</tr>
<tr>
<td>bicapped square antiprism</td>
<td>10</td>
<td>$D_{4d}(1441)$</td>
<td>204.873</td>
<td>145076.754</td>
<td>0</td>
<td>0.754</td>
</tr>
<tr>
<td>icosahedron</td>
<td>12</td>
<td>$I_h(1551)$</td>
<td>-5.296</td>
<td>97086.514</td>
<td>-2.6 x 10^{-9}</td>
<td>0.754</td>
</tr>
<tr>
<td>cuboctahedron</td>
<td>12</td>
<td>$O_h(444)$</td>
<td>-5.296</td>
<td>97086.514</td>
<td>-2.6 x 10^{-9}</td>
<td>0.754</td>
</tr>
<tr>
<td>dodecahedron</td>
<td>20</td>
<td>$I_h(5555)$</td>
<td>-527.357</td>
<td>114166.566</td>
<td>-0.0019</td>
<td>0.772</td>
</tr>
</tbody>
</table>

Preferred structure: face-centered cube

General analysis (Bowers and Rajagopal (2002))
Effective gap equation for the LOFF phase

For the single plane wave ($P = 1$) the pairing region is defined by

$$\Delta_{\text{eff}} = \Delta \theta(E_u) \theta(E_d) = \begin{cases} \Delta & \text{for} \ ((p, \vec{v}_F)) \in \text{PR} \\ 0 & \text{elsewhere} \end{cases}$$

$$E_{\text{u,d}} = \pm (\delta \mu - \vec{v}_F \cdot \vec{q}) + \sqrt{\xi^2 + \Delta^2}, \quad \xi = p - \mu$$

$$\Delta = \frac{g \rho}{2} \int \frac{d \vec{v}}{4\pi} \int_{\delta} d\xi \frac{\Delta_{\text{eff}}}{\sqrt{\xi^2 + \Delta_{\text{eff}}^2}}$$

$$\rho = 4 \frac{\mu^2}{\pi^2}$$
How to obtain this result starting from an effective theory for fermions close to the Fermi surface? Problem:

\[\mathcal{L} \sim \Delta e^{2i\vec{q} \cdot \vec{r}} \psi^T \mathcal{C} \psi \]

where in the Fermi fields the large part in the momentum has been extracted

\[\mathbf{p} = \mu \mathbf{v}_F + \ell \]

Solution: appropriate average procedure over the cell size

\[\mathcal{L} \rightarrow \Delta_{\text{eff}} \psi^T \mathcal{C} \psi \]
Average by

$$g_R(\vec{r}) = \prod_{k=1}^{3} \frac{\sin(\pi qr_k / R)}{\pi r_k}$$

When $R/\pi \sim 1$ different from zero in a region of the order of the cell size. Condition satisfied if the gap is not too small.
For P plane waves

\[\langle \psi(x)\psi(x) \rangle = \Delta \sum_{k=1}^{P} e^{2i\vec{q}_k \cdot \vec{x}} \]

an analogous average procedure gives pairing regions and effective gap given by

\[P_k = \{(p, \vec{v}_F) \mid \Delta_E(p, \vec{v}_F) = k\Delta \} \]

\[\Delta_E(p, \vec{v}_F) = \sum_{m=1}^{P} \Delta_{\text{eff}}(p, \vec{v}_F \cdot \vec{q}_m) \]
We obtain the following gap equation

\[P \Delta = \frac{g \rho}{2} \sum_{k=1}^{P} \iint_{p_k} d\vec{v} \ d\xi \frac{\Delta_E}{\sqrt{\xi^2 + \Delta_E^2}} = \]

\[= \frac{g \rho}{2} \sum_{k=1}^{P} \iint_{p_k} d\vec{v} \ d\xi \frac{k \Delta}{\sqrt{\xi^2 + k^2 \Delta^2}} \]

The result can be interpreted as having \(P \) quasi-particles each of one having a gap \(k \Delta \), \(k = 1, \ldots, P \).
The approximation is better far from a second order transition and it is exact for $P = 1$ (original FF case).
Evaluating the free energy at the CC point we see that the P=6 case (octahedron) is favored. Then the cube takes over at $\delta\mu_2 \sim 0.95 \Delta$.

<table>
<thead>
<tr>
<th>P</th>
<th>z_q</th>
<th>Δ/Δ_0</th>
<th>$2\Omega \rho\Delta_0^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.78</td>
<td>0.24</td>
<td>-1.8×10^{-3}</td>
</tr>
<tr>
<td>2</td>
<td>1.0</td>
<td>0.75</td>
<td>-0.08</td>
</tr>
<tr>
<td>6</td>
<td>0.9</td>
<td>0.28</td>
<td>-0.11</td>
</tr>
<tr>
<td>8</td>
<td>0.9</td>
<td>0.21</td>
<td>-0.09</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P</th>
<th>$\delta\mu_2/\Delta_0$</th>
<th>Order</th>
<th>z_q</th>
<th>Δ/Δ_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.754</td>
<td>II</td>
<td>0.83</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0.83</td>
<td>I</td>
<td>1.0</td>
<td>0.81</td>
</tr>
<tr>
<td>6</td>
<td>1.22</td>
<td>I</td>
<td>0.95</td>
<td>0.43</td>
</tr>
<tr>
<td>8</td>
<td>1.32</td>
<td>I</td>
<td>0.9</td>
<td>0.35</td>
</tr>
</tbody>
</table>
Two phase transitions from the CC point
($M_s^2/\mu = 4 \Delta_{2SC}$) up to the cube case
($M_s^2/\mu \sim 7.5 \Delta_{2SC}$). Extrapolating to CFL
($\Delta_{2SC} \sim 30$ MeV) one gets that LOFF should be favored from about
$M_s^2/\mu \sim 120$ MeV up $M_s^2/\mu \sim 225$ MeV.

\[
\begin{array}{|c|c|c|c|c|}
\hline
P & \delta \mu_2/\Delta_0 & \text{Order} & z_q & \Delta/\Delta_0 \\
\hline
1 & 0.754 & II & 0.83 & 0 \\
2 & 0.83 & I & 1.0 & 0.81 \\
6 & 1.22 & I & 0.95 & 0.43 \\
8 & 1.32 & I & 0.9 & 0.35 \\
\hline
\end{array}
\]
Conclusions

- Under realistic conditions (M_s not zero, color and electric neutrality) new CS phases might exist.
- In these phases gapless modes are present. This result might be important in relation to the transport properties inside a CSO.