The Lightest Pseudo-Goldstone Boson

at future e^+e^- Colliders

Roberto Casalbuoni

DESY - August 21, 2000

- A. Deandrea
- S. De Curtis
- D. Dominici
- R. Gatto
- J. F. Gunion

Talk based on hep-ph/9809523

Summary

- The effective description
- The P^0 at LEP, LEP2
- The P^0 at the Tevatron and the LHC
- The P^0 at e^+e^- colliders
- The P^0 at $\gamma \gamma$ colliders
- Effective low-energy parameters for P^0 from NLC?
- The P^0 at muon colliders
- Conclusions

The effective description

EWSB in terms of an effective lagrangian \mathcal{L}

- Spontaneous breaking $G \to H$
- Gauge group $G_W = SU(3) \otimes SU(2)_L \otimes U(1)_Y$ G_W included in G

Strategy:

- Write the most general Yukawa couplings invariant under G_{W}
- Compute the effective potential $V_{
 m eff}$ including Yukawa and gauge interactions
- Cut off the theory at some scale $\Lambda pprox {
 m few} \ TeV$

This procedure allows for an estimate of the mass spectrum of the PNGB deriving from the SB.

We will discuss the specific example of

$$G = SU(8)_L \otimes SU(8)_R \rightarrow H = SU(8)_V$$

This is the breaking occurring, for instance, in TC theories with T-fermions $T=(U_i,D_i,N,E)$, $i=1,2,3\in SU(3)_c$. The quantum numbers of the PNGB's are easily seen from the product $\bar{T}\otimes T$

$$[(\bar{3},2) \oplus (1,2)] \otimes [(3,2) \oplus (1,2)] =$$

$$= (1,1) \oplus (1,3) \oplus (1,3)$$
 (#7 colorless PNGB's)

$$\oplus$$
(8,1) \oplus (8,3) (#32 color octect PNGB's)

$$\oplus$$
(3,1) \oplus ($\overline{3}$,1) \oplus (3,3) \oplus ($\overline{3}$,3)

(#24 color triplet and antitriplet PNGB's)
More detailed properties:

Table of PNGB

The 63 Goldstone bosons with their quantum numbers and transformation properties under $SU(2)_L$ and $SU(3)_c$ (here $Y = 2(Q - T^3)$ is the hypercharge):

	$SU(2)_L$	$SU(3)_c$	Q	Y
π^+ $(\tilde{\pi}^+)$ $\pi^ (\tilde{\pi}^-)$ π^3 $(\tilde{\pi}^3)$	3	1 (1)	1 -1 0	0
π_D	1	1	0	0
π_8^{lpha}	1	8	0	0
π_8^{lpha} π_8^{lpha+} π_8^{lpha-} π_8^{lpha-} π_8^{lpha-3}	3	8	1 -1 0	0
$P_3^{0i} \ (\bar{P}_3^{0i})$	1	3 (3)	$\frac{2}{3} \left(-\frac{2}{3}\right)$	
$P_{3}^{+i} \ (\bar{P}_{3}^{+i})$ $P_{3}^{-i} \ (\bar{P}_{3}^{-i})$ $P_{3}^{3i} \ (\bar{P}_{3}^{3i})$	3	3 (3)	$\begin{array}{c} \frac{5}{3} \left(-\frac{5}{3} \right) \\ -\frac{1}{3} \left(\frac{1}{3} \right) \\ \frac{2}{3} \left(-\frac{2}{3} \right) \end{array}$	$\frac{4}{3} \left(-\frac{4}{3} \right)$

We will concentrate on color singlet PNGB's: $(1,1) \oplus (1,3) \oplus (1,3) = \pi_D, \ \pi_a, \ \tilde{\pi}_a, \ a=1,2,3$ π_a absorbed by W and Z. Physical colorless PNGB: $\pi_D, \ \tilde{\pi}_3, \tilde{\pi}^{\pm}$.

The effective Lagrangian

Gauge Lagrangian

The low energy effective lagrangian will contain interaction terms among the PNGB's and the ordinary gauge bosons, collected in \mathcal{L}_q (Chada and Peskin, 1981):

$$\mathcal{L}_g = \frac{v^2}{16} Tr \left(\mathcal{D}_{\mu} U^{\dagger} \mathcal{D}_{\mu} U \right)$$

where

$$U = \exp\left(\frac{2iT^s\pi^s}{v}\right)$$

with v=246~GeV. $T^s~(s=1,\ldots,63)$ are the SU(8) generators.

The covariant derivative $\mathcal{D}_{\mu}U$ is given by

$$\mathcal{D}_{\mu}U = \partial_{\mu}U + \mathcal{A}_{\mu}U - U\mathcal{B}_{\mu}$$

where

$$\mathcal{A}_{\mu} = igT^{a}W_{\mu}^{a} + ig'\frac{T_{D}}{\sqrt{3}}B_{\mu} + i\frac{g_{s}}{\sqrt{2}}T_{8}^{\alpha}G_{\mu}^{\alpha}$$

$$\mathcal{B}_{\mu} = ig'T^{3}B_{\mu} + ig'\frac{T_{D}}{\sqrt{3}}B_{\mu} + i\frac{g_{s}}{\sqrt{2}}T_{8}^{\alpha}G_{\mu}^{\alpha}$$

 W_{μ}^{a} (a=1,2,3), B_{μ} and G_{μ}^{α} $(\alpha=1,\cdots,8)$, are the gauge vector fields related to the gauge group G_{W} .

• Yukawa Lagrangian (R.C. et al., 1992)

In order to write the Yukawa couplings between the Goldstone bosons and the ordinary fermions we decompose the matrix \boldsymbol{U} according to

$$U = \left(egin{array}{cccc} U_{uu}^{ij} & U_{ud}^{ij} & U_{u
u}^{k} & U_{ue}^{k} \ U_{du}^{ij} & U_{dd}^{ij} & U_{d
u}^{k} & U_{de}^{k} \ U_{vu}^{l} & U_{v
u}^{l} & U_{v
u}^{l} & U_{v
u}^{l} & U_{v
u}^{l} & U_{e
u$$

The most general Yukawa coupling invariant with respect to G_W for the third family and for the muons (relevant for muon colliders) is given by

$$\mathcal{L}_{Y} = - m_{1} \left(\bar{t}_{R}^{i} U_{uu}^{\dagger ij} t_{L}^{j} + \bar{t}_{R}^{i} U_{du}^{\dagger ij} b_{L}^{j} \right) - m_{2} \left(\bar{b}_{R}^{i} U_{ud}^{\dagger ij} t_{L}^{j} + \bar{b}_{R}^{i} U_{dd}^{\dagger ij} b_{L}^{j} \right) \\
- m_{4} \left(\bar{\tau}_{R} U_{\nu e}^{\dagger} \nu_{\tau L} + \bar{\tau}_{R} U_{ee}^{\dagger} \tau_{L} \right) - m_{4}^{(2)} \left(\bar{\mu}_{R} U_{\nu e}^{\dagger} \nu_{\mu L} + \bar{\mu}_{R} U_{ee}^{\dagger} \mu_{L} \right) \\
- m_{5} \left(\bar{t}_{R}^{i} U_{uu}^{\dagger jj} t_{L}^{i} + \bar{t}_{R}^{i} U_{du}^{\dagger jj} b_{L}^{i} \right) - m_{6} \left(\bar{b}_{R}^{i} U_{ud}^{\dagger jj} t_{L}^{i} + \bar{b}_{R}^{i} U_{dd}^{\dagger jj} b_{L}^{i} \right) \\
- m_{7} \left(\bar{t}_{R}^{i} U_{\nu \nu}^{\dagger jj} t_{L}^{i} + \bar{t}_{R}^{i} U_{e\nu}^{\dagger jj} b_{L}^{i} \right) - m_{9} \left(\bar{b}_{R}^{i} U_{\nu e}^{\dagger} t_{L}^{i} + \bar{b}_{R}^{i} U_{ee}^{\dagger} b_{L}^{i} \right) \\
- m_{10} \left(\bar{\tau}_{R} U_{ud}^{\dagger jj} \nu_{\tau L} + \bar{\tau}_{R} U_{dd}^{\dagger jj} \tau_{L} \right) \\
- m_{10} \left(\bar{\mu}_{R} U_{ud}^{\dagger jj} \nu_{\mu L} + \bar{\mu}_{R} U_{dd}^{\dagger jj} \mu_{L} \right) \\
- m_{11} \left[\bar{t}_{R} \lambda^{\alpha} \left(U_{uu}^{\dagger} U_{du}^{\dagger} \right) \begin{pmatrix} \lambda^{\alpha} & 0 \\ 0 & \lambda^{\alpha} \end{pmatrix} \begin{pmatrix} t_{L} \\ b_{L} \end{pmatrix} \right] \\
- m_{12} \left[\bar{b}_{R} \lambda^{\alpha} \left(U_{ud}^{\dagger} U_{dd}^{\dagger} \right) \begin{pmatrix} \lambda^{\alpha} & 0 \\ 0 & \lambda^{\alpha} \end{pmatrix} \begin{pmatrix} t_{L} \\ b_{L} \end{pmatrix} \right] \\
+ \dots + h c$$

The magnitudes of the Yukawa couplings are naturally set by the scale of the corresponding fermionic masses.

• In a multiscale technicolor model, the above would be generalized by writing \mathcal{L}_g and \mathcal{L}_Y as a sum of terms with different v_i ($v_i \leq v$).

Expanding U to first order in 1/v, we get the relevant terms for the colorless neutral fields

$$U_{uu}^{ij} \sim \delta^{ij} \left[1 + \frac{i}{v} \sqrt{6} \frac{P^{0}'}{3} \right] + \dots$$

$$U_{dd}^{ij} \sim \delta^{ij} \left[1 - \frac{i}{v} \sqrt{6} \frac{P^{0}}{3} \right] + \dots$$

$$U_{\nu\nu} \sim \left[1 - \frac{i}{v} \sqrt{6} P^{0}' \right] + \dots$$

$$U_{ee} \sim \left[1 + \frac{i}{v} \sqrt{6} P^{0} \right] + \dots$$

with

$$P^{0} = \frac{\tilde{\pi}_{3} - \pi_{D}}{\sqrt{2}}, \qquad P^{0\prime} = \frac{\tilde{\pi}_{3} + \pi_{D}}{\sqrt{2}}$$

or (in a TC realization)

$$P^{0} = \frac{1}{\sqrt{12}} (3E\overline{E} - D\overline{D}) \quad P^{0'} = \frac{1}{\sqrt{12}} (U\overline{U} - 3N\overline{N})$$

which are purely $T_3 = -1/2$ and $T_3 = +1/2$ weak isospin states.

From the $\mathcal{O}(1)$ terms in the expansion of \mathcal{L}_Y we easily recover the expressions for the fermion masses

$$m_t = m_1' + m_7$$
 $m_b = m_2' + m_9$

$$m_{\tau} = m_4 + 3m_{10}$$
 $m_{\mu} = m_4^{(2)} + 3m_{10}^{(2)}$

$$m_{\nu_{\tau}} = m_{\nu_{\mu}} = 0$$

where

$$m_1' \equiv m_1 + 3m_5 + \frac{16}{3}m_{11}$$
 $m_2' \equiv m_2 + 3m_6 + \frac{16}{3}m_{12}$

Evaluate one-loop effective potential

$$m_{P^0}^2 = \frac{4\Lambda^2}{\pi^2 v^2} (2m_2' m_9 + 2m_4 m_{10} + 2m_4^{(2)} m_{10}^{(2)}) \equiv \frac{4\Lambda^2}{\pi^2 v^2} \rho_8$$

$$m_{P^{0}}^2 = \frac{4\Lambda^2}{\pi^2 v^2} 2m_1' m_7 \equiv \frac{4\Lambda^2}{\pi^2 v^2} \rho_7$$

 Λ is the UV cut-off, situated in the TeV region.

The colored PNGB get masses generally higher (from QCD contribution $\approx g_s \Lambda$)

A few comments are in order

- \bullet P^0 and $P^{0\prime}$ masses do not receive contributions from gauge interactions
- m_{P^0} gets contribution only from terms involving $b,\ au$ and μ
- m_{P^0} , gets contribution only from terms involving top
- no $P^0 P^{0\prime}$ mixing
- A very crucial point: P^0 and P^{0} are the mass eigenstates and not the isosinglet π_D and the isotriplet $\tilde{\pi}_3$

$$m_{P^0} << m_{P^0}$$

The colorless charged states are also heavier than P^0 since $m_{P^\pm}^2 = \frac{1}{2}(m_{P^0}^2 + m_{P^0})^2$

A general argument for understanding the mass matrix in the colorless neutral sector is the following

- ullet In the chiral limit $SU(2)_L\otimes SU(2)_R$ is unbroken
- The mass operator breaking $SU(2)_L \otimes SU(2)_R$ must commute with the charge operator $T_3 = T_{3L} + T_{3R}$

Then

$$m^2 = A + BK_3 + CT_3$$
, $K_3 = T_{3L} - T_{3R}$

In the basis $(\tilde{\pi}_3, \pi_D)$

$$m^2 = \left(\begin{array}{cc} A & B \\ B & A \end{array}\right)$$

meaning that generically the mass eigenstates are P^0 and $P^{0\prime}$.

Notice that for the neutral states

$$T_{3L}^2 = T_{3R}^2 = -T_{3L}T_{3R} = \frac{1}{4}$$

$$0 = (T_{3L} + T_{3R})^2 = \frac{1}{2} + 2T_{3L}T_{3R}$$

P⁰ couplings

The P^0 boson couples to the $T_3 = -1/2$ component of the fermion doublets (while $P^{0\prime}$ couples to the $T_3 = +1/2$ component):

$$\mathcal{L}_Y = -i \lambda_b \bar{b} \gamma_5 b P^0 - i \lambda_\tau \bar{\tau} \gamma_5 \tau P^0 - i \lambda_\mu \bar{\mu} \gamma_5 \mu P^0 + \cdots$$

with

$$\lambda_b = -\frac{\sqrt{6}}{3v} (m_2' - 3m_9)$$
 $\lambda_\tau = \frac{\sqrt{6}}{v} (m_4 - m_{10})$

$$\lambda_{\mu} = \frac{\sqrt{6}}{v} \left(m_4^{(2)} - m_{10}^{(2)} \right)$$

The coefficients depend on the same m_2^\prime combination as the fermion masses

• The phenomenolgy of P^0 depends on 6 parameters (4 neglecting the muon terms)

$$m_2', m_4, m_9, m_{10}, m_4^{(2)}, m_{10}^{(2)}$$

Since we have 3 fermionic masses (m_b, m_τ, m_μ) and 3 Yukawa couplings involving different parameter combinations we can determine all the \mathcal{L}_Y parameters for the P^0 by measuring masses and widths. This would allow to determine ρ_8

$$m_{P^0}^2 = \frac{4\Lambda^2}{\pi^2 v^2} \rho_8$$

and therefore \wedge via m_{P^0} .

Since the parameters m_i are expected of the same order of the corresponding m_f we will make a special choice as representative for this study

$$m_1' = m_7 = \frac{m_t}{2}$$
 $m_2' = m_9 = \frac{m_b}{2}$

$$m_{10} = -m_4 = \frac{m_\tau}{2}$$
 $m_{10}^{(2)} = -m_4^{(2)} = \frac{m_\mu}{2}$

The corresponding one-loop P^0 and $P^{0\prime}$ masses are

$$m_{P^0}^2 = \frac{2\Lambda^2}{\pi^2 v^2} m_b^2 \quad m_{P^0}^2 = \frac{2\Lambda^2}{\pi^2 v^2} m_t^2$$

$$\Rightarrow$$
 $m_{P^0} \sim 9 \text{ GeV} \times \Lambda(\text{TeV})$ $m_{P^0} \sim 310 \text{ GeV} \times \Lambda(\text{TeV})$

and the fermionic couplings

$$\lambda_b = \sqrt{\frac{2}{3}} \frac{m_b}{v}, \quad \lambda_\tau = -\sqrt{6} \frac{m_\tau}{v}, \quad \lambda_\mu = -\sqrt{6} \frac{m_\mu}{v}$$

- The previous choice just as a first assessment about the prospects of determining directly from the experiments all the parameters m_i for P^0 , as well as Λ
- ullet Typically $m_{P^0}/m_{P^0}pprox m_t/m_b$. Then $m_{P^0}/m_{P^0} \gg m_{P^0}$
- The PNGB couple to pairs of SM gauge bosons via ABJ anomaly. The couplings are model dependent. We will use the ones obtained for the standard TC models

$$g_{PV_1V_2} = \alpha N_{TC} \frac{A_{PV_1V_2}}{\pi v} \epsilon_{\lambda\mu\nu\rho} p_1^{\lambda} \epsilon_1^{\mu} p_2^{\nu} \epsilon_2^{\rho}$$

where for $P = P^0$ we have:

$$A_{P^{0}\gamma\gamma} = -\frac{4}{\sqrt{6}} \left(\frac{4}{3}\right) \approx 2.2$$

$$A_{P^{0}Z\gamma} = -\frac{4}{2\sqrt{6}} \left(\frac{1 - 4s_{W}^{2}}{4s_{W}c_{W}} - \frac{t_{W}}{3}\right) \approx 0.11$$

$$A_{P^{0}ZZ} = -\frac{4}{\sqrt{6}} \left(\frac{1 - 2s_{W}^{2}}{2c_{W}^{2}} - \frac{t_{W}^{2}}{3}\right) \approx -0.41$$

$$A_{P^{0}gg} = \frac{1}{\sqrt{6}} \approx 0.41$$

with $s_W = \sin \theta_W$, etc..

- \bullet Notice the dominance of the $\gamma\gamma$ coupling with respect to $Z\gamma$ and to ZZ
- The relevance of the mass eigenstate composition is shown by

$$A_{P^0\gamma\gamma}^2: A_{\pi_D\gamma\gamma}^2: A_{\tilde{\pi}_3\gamma\gamma}^2 = 8:1:9$$

$$A_{P^0qq}^2: A_{\pi_Dgg}^2: A_{\tilde{\pi}_3gg}^2 = 1:2:0$$

• How big is N_{TC} ? Difficult to say. In naive TC there is the constraint from EW precision measurements (N_D number of TC-doublets)

$$S \approx 0.28 N_D \frac{N_{TC}}{3}$$

against

$$S_{\text{exp}} = -0.07(-0.09) \pm 0.11$$

 $M_H(GeV) = 100(300)$

This would imply N_{TC} as low as possible (together with N_D). But this is the result of the QCD-scaled TC which has a lot of other problems, as FCNC, the mass of the top (requiring Λ_{ETC} too close to Λ_{TC}). These problems are currently solved by introducing things as walking TC and color-top assisted models. This makes very difficult to get a realistic estimate for S. For instance, the Weinberg sum rules are violated in walking TC making unrealistic the previous estimate.

• P^0 partial widths and BR's

We will need

$$\Gamma(P^{0} \to f\bar{f}) = C_{F} \frac{m_{P^{0}}}{8\pi} \lambda_{f}^{2} \left(1 - \frac{4m_{f}^{2}}{m_{P^{0}}^{2}} \right)^{2}$$

$$\Gamma(P^{0} \to gg) = \frac{\alpha_{s}^{2}}{48\pi^{3}v^{2}} N_{TC}^{2} m_{P^{0}}^{3}$$

$$\Gamma(P^{0} \to \gamma\gamma) = \frac{2\alpha^{2}}{27\pi^{3}v^{2}} N_{TC}^{2} m_{P^{0}}^{3}$$

 $C_F=1$ (3) for leptons(down-type quarks). All results for $N_{TC}=1,4$ to show the N_{TC} dependence

- ullet Total width in the few MeV range, similar to Higgs
- Largest BR's: $b\bar{b}$, $\tau^+\tau^-$, gg
- $\Gamma(P^0 \to gg)/\Gamma(H \to gg) \approx 1.5 N_{TC}^2$
- $B(P^0 \to \gamma \gamma)/B(H \to \gamma \gamma) \approx$ 4 for $50 \le m_{P^0}(GeV) \le$ 150 and $N_{TC} =$ 4. Much smaller for $N_{TC} =$ 1.

- The P^0 discovery in the $\gamma\gamma$ channel at a hadron collider much easier than for the Higgs, if $N_{TC}>1$. The same is true for discovering P^0 in $\gamma\gamma$ colliders. For $N_{TC}=1$ things about as for the Higgs
- This depends again on the precise mass eigenstate composition of P^0 . For π_D we get reduction factors 8 and 8/3 for the ratios $gg \to \pi_D \to \gamma\gamma$ and $\gamma\gamma \to \pi_D \to b\bar{b}$ to the Higgs
- The possibility of having large P^0/H ratios for the ΓB products together with P^0 being naturally light makes P^0 a unique particle!!

P^0 at LEP and LEP2

• At LEP the dominant production mode is $Z \to \gamma P^0$ (Manohar and Randall, 1990)

$$\Gamma(Z \to \gamma P^0) = \frac{\alpha^2 m_Z^3}{96\pi^3 v^2} N_{TC}^2 A_{P^0 Z \gamma}^2 \left(1 - \frac{m_{P^0}^2}{m_Z^2}\right)^3$$

Requiring $Z \to \gamma P^0 > 2 \times 10^{-6}$ GeV to make the P^0 visible in a sample of $10^7~Z$ bosons, we get the minimum N_{TC} required as a function of m_{P^0} . $N_{TC} \gtrsim 8$ is required at $m_{P^0} = 0$, rising rapidly as m_{P^0} increases.

• LEP2 - $\sigma(e^+e^- \to P^0\gamma)$ is dominated by $e^+e^- \to \gamma \to \gamma P^0$ ($A_{P^0\gamma\gamma}$ larger than $A_{P^0Z\gamma}$). For $\sqrt{s}=200~GeV$ and an angular cut $20^0 \le \theta_\gamma \le 160^0$ (to avoid F/B singularities but still 91% efficient)

$$\sigma(e^+e^- \to \gamma P^0) < 1$$
 fb, $N_{TC} = 4$ With $L=0.5$ fb $^{-1}$ P^0 not detectable at LEP2 unless N_{TC} is very large

P^0 at the Tevatron and the LHC

 Most important discovery mode both at the Tevatron and the LHC

$$gg \to P^0 \to \gamma \gamma$$

Very robust, remember ratios to Higgs

• Rate proportional to $\Gamma(P^0 \to gg)B(P^0 \to \gamma\gamma)$. For $N_{TC}=4$, factor ≈ 10 w.r. to the Higgs for $m_{P^0}\approx 12~GeV$ up to ≈ 100 for $m_{P^0}>100~GeV$ and increasing rapidly since $B(H\to\gamma\gamma)$ declines for the opening of $H\to WW,ZZ$ channels $(P^0\to WW)$ vanishes and $P^0\to ZZ$ is negligible). Signal rate decreases only due to phase space

Tevatron RunI

• For L=100 fb $^{-1}$, # events \approx 10 at $m_{P^0} \approx$ 40 GeV down to \approx 2 at $m_{P^0} \approx$ 200 GeV. Further reduction from efficiencies and cuts. A more accurate analysis shows that RunI could, at best, exclude the possibility of a light P^0 for $N_{TC} > 12$

Tevatron RunII

• Sizeable rate for L=2 fb⁻¹ (but for N_{TC} = 1, S < 1). The background shown is the irreducible $\gamma\gamma$. Reducible γj and jj requires detailed detector simulation

• The P^0 is detectable for $m_{P^0} > 60~GeV$ $(N_{SD} > 3)$. A luminosity of about 30 fb $^{-1}$ would allow a determination of $\Gamma(P^0 \to gg)B(P^0 \to \gamma\gamma)$ of about $5 \div 10\%$. At low masses a serious study of the reducible background needed. Again, if π_D is the mass eigenstate, the process $gg \to \pi_D \to \gamma\gamma$ much less enhanced. Poor prospectives for the Tevatron RunII.

LHC

- Both ATLAS and CMS claim the possibility of discovering the SM Higgs in $gg \to H \to \gamma \gamma$. No problems for P^0 at LHC even for $N_{TC}=1$. For $N_{TC} \geq 4$ it is safe to assume that the discovery range is $50 \leq m_{P^0}(GeV) \leq 200$. The background studies of the LHC collaborations are not available for $m_H > 200~GeV$, but we expect that the discovery region can be extended beyond 200~GeV. For $m_{P^0} < 50~GeV$ limitations come from the irreducible $\gamma \gamma$ BG and in rejecting the reducible γj and jj. We estimate that for $N_{TC}=4$, $m_{P^0}>30~GeV$ is possible, but $m_{P^0} \leq 20~GeV$ is a problem
- A detailed study of the case $N_{TC}=1$ shows that for $70 \leq m_{P^0}(GeV) \leq 200$, the P^0 is detectable at LHC
- The statistical errors for $gg \to P^0 \to \gamma \gamma$ we get, are

$$N_{TC} = 4 \quad \longmapsto \quad \approx 1\%$$
 $N_{TC} = 1 \quad \longmapsto \quad \approx 20\%$

• Another possible production channel is through T-vectors as ρ_T or ω_T in $pp \to V^\pm X \to P^\pm P^0 X$, or $pp \to V^0 X \to P^\pm P^\mp X$. The rates are decent only if the T-vector V is relatively low in mass, as in walking TC.

P^0 at future e^+e^- colliders

- $d\sigma_{e^+e^-\to\gamma P^0}/dm_{P^0}$ (solid curve), $\gamma b\bar{b}$ (dotdash), $\gamma c\bar{c}$ (dashes), $\gamma q\bar{q}$ (small dashes), $\gamma \tau^+\tau^-$ (dashdoubledots)
- Dominant mode $e^+e^- \to P^0\gamma$. At TESLA, L=500 fb⁻¹, we get about 2500 ÷ 4500 events $(e^+e^- \to ZP^0)$ is about 1%). For $N_{TC}=1$ only less than 30 events. For the following discussion $N_{TC}=4$. The relevant BG's are $\gamma b\bar{b}$, $\gamma c\bar{c}$, $\gamma q\bar{q}$ (q=u,d,s) and $\gamma \tau^+ \tau^-$. The corresponding σ 's are integrated over a bin of $\Delta M_X=10~GeV$. Angular cuts have been applied to signal and B's. Tagging and mistagging have been included

• Notice that S/\sqrt{B} is not as good as for the SM Higgs in the ZH mode, since $P^0\to ZZ$ only through the ABJ anomaly. The discovery regions are $(S/\sqrt{B}\geq 3)$ for L = 100 (500) fb⁻¹

$$m_{P^0} \le 75(80) \; GeV \ m_{P^0} \ge 130(100) \; GeV$$

• After discovery one can extract ratios of BR's via the rates with the fractional accuracy shown in Figure. The only reasonable channel is $b\bar{b}$ with an error \geq 15% for L=500 fb⁻¹.

• A model independent determination of the absolute BR's $B(P^0 \to F)$ (F any final state) would be possible through the ratio of the rate $P^0 \to F$ to the inclusive rate

$$B(P^0 \to F) = \frac{\sigma(e^+e^- \to \gamma P^0)B(P^0 \to F)}{\sigma(e^+e^- \to \gamma P^0)}$$

Crucial the detection of P^0 inclusively as a peak in the recoil spectrum. Resolution fixed by the E_γ resolution. For

$$\frac{\Delta E_{\gamma}}{E_{\gamma}} = \frac{0.12}{E_{\gamma}(GeV)} \oplus 0.01$$

we get $= \pm 1\sigma$ mass windows

or, for

$$\frac{\Delta E_{\gamma}}{E_{\gamma}} = \frac{0.08}{E_{\gamma}(GeV)} \oplus 0.005$$

we get $= \pm 1\sigma$ mass windows

with $m_{P^0}(GeV) = 55$, 100 and 200 respectively. Knowing m_{P^0} in advance one can choose the appropriate window and estimate the BG's, but the errors will be large.

The conclusion is that at an e^+e^- collider will be very difficult to get more than a very rough determination of the parameters entering in the effective lagrangian, for $N_{TC}=4$. For $N_{TC}=1$ one would need more than 500 fb⁻¹ even for detecting P^0 .

Results at future $\gamma\gamma$

By folding the cross section for the P^0 production at a given energy $E_{\gamma\gamma}$ of a $\gamma\gamma$ collider with the differential luminosity (Gunion and Haber, 1993)

$$\begin{split} N(\gamma\gamma \to P^0 \to X) &= \frac{8\pi\Gamma(P^0 \to \gamma\gamma)B(P^0 \to X)}{m_{P^0}^2 E_{e^+e^-}} \\ &\times \tan^{-1}\frac{\Gamma_{\rm exp}}{\Gamma_{P^0}^{\rm tot}} \left(1 + \langle \lambda\lambda' \rangle \right) G(y_0) L_{e^+e^-} \end{split}$$

where $y_0=m_{P^0}/E_{e^+e^-}$, λ and λ' are the helicities of the colliding photons, $\Gamma_{\rm exp}$ is the mass interval accepted in the final state. The function G(y) is defined by

$$\frac{dL_{\gamma\gamma}}{dy} \equiv G(y)L_{e^+e^-}$$

G(y) and $\langle \lambda \lambda' \rangle$ are obtained after convoluting over the possible energies and polarizations of the colliding photons that yeld a fixed value of y. For initial discovery one chooses a setup with initial laser circular polarizations and e^+e^- helicities for a broad spectrum $(2\lambda_e P_c = +1)$. One has $G(y_0) \gtrsim 1$ and $\langle \lambda \lambda' \rangle \sim 0.8$.

γγ Collider Rates

Angular cut $|\cos \theta| \leq z_0$. $L_{eff} \equiv G(y_0) L_{e^+e^-}$. Also shown the irreducible $\gamma \gamma \to b \bar{b}$ BG.

• The large value of $\Gamma(P^0 \to \gamma \gamma) B(P^0 \to b \bar{b})$ compared to the Higgs case implies very good rates. We stress once more the relevance of the composition of the mass eigenstate, for π_D rates down by a factor 8. Good values of S/\sqrt{B} , from 8 for $m_{P^0} \approx 20~GeV$ to 200 for $m_{P^0} \approx 200~GeV$. Even for $N_{TC} = 1$, the P^0 will be detectable for $m_{P^0} > 60~GeV$.

$$\gamma\gamma$$
 \to $b\overline{b}$ Signal
$$L_{eff} = 20 fb^{-1}, \ z_0 = 0.85, \ \langle\lambda\lambda'\rangle = 0.8, \ \Gamma_{exp} = 5 \ GeV$$

- Once discovered it would be possible to measure the rate $\Gamma(P^0 \to \gamma \gamma) B(P^0 \to b \bar{b})$ with a very high statistical accuracy. For $m_{P^0} \approx 100~GeV$ we get $\approx 1.5\%$. The systematic will dominate this error. For $N_{TC}=1$ we get $\approx 5\%$. Going down to $m_{P^0}\approx 20~GeV$ we get $\approx 10\%$ for $N_{TC}=4$
- Other channels? $\gamma\gamma\to P^0\to \tau^+\tau^-,\ gg$ have large event rates, but
 - BG too large for the gg final state
 - BG not large for $\tau^+\tau^-$ but not a sharp peak

However, optimization of the set-up knowing already m_{P^0} could make it possible.

- $\gamma\gamma \to P^0 \to \gamma\gamma$ event rate is $\approx 20(50)$ at $m_{P^0} \approx 100~GeV(200)$ with possible improvements through optimization. Irreducible BG probably small except for jets faking photons (detailed study needed). For $N_{TC}=1$ things more difficult. The relevance is the possibility of measuring $\Gamma_{P^0}^{\rm tot}$. To do that
 - Rate for $\gamma\gamma \to P^0 \to \gamma\gamma$ $\Gamma(P^0 \to \gamma\gamma)B(P^0 \to \gamma\gamma) = \frac{|\Gamma(P^0 \to \gamma\gamma)|^2}{\Gamma_{P^0}^{\text{tot}}}$
 - Rate for $\gamma\gamma\to P^0\to b\bar b$ proportional to $\Gamma(P^0\to\gamma\gamma)B(P^0\to b\bar b)$
 - If $B(P^0 \to b\bar{b})$ known from e^+e^- (but we saw very difficult) then extract $\Gamma(P^0 \to \gamma\gamma)$ from $b\bar{b}$ and then get $\Gamma^{\rm tot}_{P^0}$.

Using NLC to fix the effective low energy parameters for P^0 ?

The available well-measured quantities from the LHC and the $\gamma\gamma$ colliders would be

- $\Gamma(P^0 \to gg)B(P^0 \to \gamma\gamma)$ from the LHC
- $\Gamma(P^0 \to \gamma \gamma) B(P^0 \to b \overline{b}, \tau^+ \tau^-, \gamma \gamma)$ from the $\gamma \gamma$ collider

The dependence of the measured quantities on the parameters is

$$\Gamma(P^{0} \to gg)\Gamma(P^{0} \to \gamma\gamma) \propto N_{TC}^{4}/v^{4}$$

$$\Gamma(P^{0} \to \gamma\gamma)\Gamma(P^{0} \to b\bar{b}) \propto N_{TC}^{2}/v^{2} \times [4m_{2}' - 3m_{b}]^{2}/v^{2}$$

$$\Gamma(P^{0} \to \gamma\gamma)\Gamma(P^{0} \to \tau^{+}\tau^{-}) \propto N_{TC}^{2}/v^{2} \times [\frac{4}{3}m_{4} - \frac{1}{3}m_{\tau}]^{2}/v^{2}$$

$$\Gamma(P^{0} \to \gamma\gamma)\Gamma(P^{0} \to \gamma\gamma) \propto N_{TC}^{4}/v^{4}$$

To get the actual rates one has to divide by $\Gamma^{\rm tot}_{P^{\rm o}}$, depending on the same parameters if gg, $\tau^+\tau^-$ and $b\bar{b}$ final states dominate the P^0 decays. Determine

- \bullet N_{TC}/v
- $|4m_2' 3m_b|/v$
- $|\frac{4}{3}m_4 \frac{1}{3}m_\tau|/v$

One can check consistency of rates $gg \to \gamma\gamma$ relative to $\gamma\gamma \to \gamma\gamma$ to verify anomalous coupling ratios.

Up to a discrete set of ambiguities it is possible to fix these 3 parameters. Then, use

$$m_b = m_2' + m_9, \quad m_\tau = m_4 + 3m_{10}$$

to fix m_9 and m_{10} .

This allows the determination of the Yukawa couplings of P^0 to b and au

$$\lambda_b = -\frac{\sqrt{6}}{3v}(m_2' - 3m_9)$$

$$\lambda_\tau = \frac{\sqrt{6}}{v}(m_4 - 3m_{10})$$

If, as likely, (m_2', m_9) , (m_4, m_{10}) and $(m_4^{(2)}, m_{10}^{(2)})$ are related respectively to m_b , m_τ and m_μ , we can approximate

$$\rho_8 = 2m_2'm_9 + 2m_4m_{10} + 2m_4^{(2)}m_{10}^{(2)}$$

$$\approx 2m_2'm_9 + 2m_4m_{10}$$

and from m_{P^0}

$$m_{P^0}^2 = \frac{4\Lambda^2}{\pi^2 v^2} \rho_8$$

obtain Λ . At the same time from N_{TC}/v we can extract N_{TC} . This assumes v=246~GeV. In multi-scale TC theories things could be different, in that case one extracts only Λ/v' and N_{TC}/v' . The coupling of P^0 to the μ may eventually be determined at a future muon collider.

s – channel P^0 production at $\mu^+\mu^-$

- The P^0 has a sizeable $\mu^+\mu^-$ coupling (not the $P^{0\prime}$)
- The muon collider has the ability to achieve a very narrow Gaussian spread, $\sigma_{\sqrt{s}} \sim 1 \text{ MeV} \left(\frac{R}{0.003\%}\right) \left(\frac{\sqrt{s}}{50 \text{ GeV}}\right)$ One can achieve R=0.003% beam energy resolution with reasonable luminosity $(L_{year}(@100 \text{ GeV})=0.1 \text{ fb}^{-1})$.
- Good measurements of rates $\mu^+\mu^- \to P^0 \to b\overline{b}, \tau^+\tau^-, gg$ and $\Gamma^{\rm tot}_{P^0}$.

In conclusion

- ullet $\Gamma_{P^0}^{\mathrm{tot}}$ from the muon collider
- $\Gamma(P^0 \to gg)B(P^0 \to \gamma\gamma)$ from the LHC
- $\Gamma(P^0 \to \gamma \gamma) B(P^0 \to b \overline{b})$ from the $\gamma \gamma$
- $\Gamma(P^0 \to \mu^+ \mu^-) B(P^0 \to F)$ for $F = b\overline{b}, \tau^+ \tau^-, gg$ from the muon collider

determine the number of technicolors of the theory and (up to a discrete set of ambiguities) the fundamental parameters of the low-energy effective Lagrangian describing the Yukawa couplings of the P^0 , as discussed for the NLC.

Conclusions

Theory

- Getting the eigenstate right is crucial
- The P^0 eigenstate is very special. Since its mass $\propto m_b$, it is much lighter than all the other PNGB's; all others bring in m_t into mass formula
- Only a few partial widths of P^0 are important and they are expressed in terms of a relatively small set of parameters of the effective lagrangian

Experiment

- ullet No limits on P^0 from LEP or LEP2 or Tevatron Runi
- Tevatron RunII has quite a chance for finding P^0 $(m_{P^0} > 60 \; GeV)$
- LHC will almost certainly discover the P^0 , but problems with very low m_{P^0}
- Poor accuracy anticipated for normal $e^+e^- \to \gamma P^0$ measurements at NLC means that $\gamma\gamma$ mode will be crucial. Only clear alternative would be a muon collider.
 - In either case we will get mass indications from LHC
- $\gamma\gamma$ mode must measure as many final states as possible. Certainly $b\bar{b}$ and $\tau^+\tau^-$ are required. $\gamma\gamma$ would be very useful

- If $\gamma\gamma\to\gamma\gamma$ measurement can be done with good accuracy it will allow a stand-alone analysis of the low-energy parameters of the P^0
- The LHC $gg \to \gamma \gamma$ measurements can provide a substitute or a cross check
- With the above measurements, many interesting parameters of the theory can be determined
 - Unambiguous determination of N_{TC}/v and Λ/v
 - Effective Yukawa Lagrangian parameters (in units of v) in down-quark/lepton sector, barring a discrete set of ambiguities