The limit shape phenomenon

Consider the tiling by dominoes, i.e. by rectangular tiles of size 1×2, of a square region of size N. A typical tiling looks as follows:

http://faculty.uml.edu/jpropp
The limit shape phenomenon

Consider the tiling by dominoes, i.e. by rectangular tiles of size 1×2, of a square region of size N. A typical tiling looks as follows:

Dominoes arrange themselves disorderedly. Of course ordered configurations can in principle be observed, but with lower and lower probability as N increases.
Consider now, instead of a square region, the so-called Aztec Diamond

(http://en.wikipedia.org/wiki/Aztec_diamond)

\[N \times N \] square

Aztec Diamond of order \(\frac{N}{2} \)

\[(N = 8) \]
Consider now, instead of a square region, the so-called Aztec Diamond

(http://en.wikipedia.org/wiki/Aztec_diamond)

Question:
What a typical tiling of the Aztec Diamond will look like?

$N \times N$ square Aztec Diamond of order $N/2$

($N = 8$)
Domino tiling of an Aztec diamond

[Jockush-Propp-Shor '95]

http://faculty.uml.edu/jpropp
Domino tiling of an Aztec diamond

[Jockush-Propp-Shor '95]
We observe the emergence of four ordered ('frozen') regions in the corners, and a central disordered ('hot') region. The separation curve looks like a circle.

This can be formalized mathematically, and there is a theorem stating that in the large N limit the separation curve is indeed exactly a circle (Arctic Circle Theorem, by Jockush, Propp and Shor, see http://arxiv.org/abs/math/9801068)
Continua