Effective quantum gravity as a locally covariant QFT

Katharina Rejzner1

University of York

Firenze, 10.09.2013

1Based on the joint work with Klaus Fredenhagen and Romeo Brunetti
Outline of the talk

1. Introduction
 - Effective quantum gravity
 - Local covariance

2. Classical theory
 - Kinematical structure
 - Dynamics and symmetries
 - BV complex

3. Quantization
 - Deformation quantization
 - Quantum BV formalism
 - Background independence
Difficulties in quantum gravity

- In contrast to QFT on curved spacetimes, in QG the spacetime structure is dynamical. Need for "background independance".
Difficulties in quantum gravity

- In contrast to QFT on curved spacetimes, in QG the spacetime structure is dynamical. Need for "background independance".
- "Points" lose their meaning. The theory is invariant under diffeomorphism transformations.
Difficulties in quantum gravity

- In contrast to QFT on curved spacetimes, in QG the spacetime structure is dynamical. Need for "background independance".
- "Points" lose their meaning. The theory is invariant under diffeomorphism transformations.
- As a QFT, quantum gravity is power counting non-renormalizable.
Ways around some of the problems

Non-renormalizability: use Epstein-Glaser renormalization to obtain finite results for any fixed energy scale. Think of the theory as an effective theory.

Outlook: use the renormalization group flow equations to look for a UV fixed point (asymptotic safety program).

Dynamical nature of spacetime: make a tentative split of the metric into background and perturbation, quantize the perturbation as a quantum field on a curved background, show background independence at the end.

Diffeomorphism invariance: use the BV formalism to do the gauge fixing. Possible difficulties: base manifold is Lorentzian and non-compact, symmetry group is infinite dimensional, so is the configuration space.
Ways around some of the problems

- **Non-renormalizability**: use Epstein-Glaser renormalization to obtain finite results for any fixed energy scale. Think of the theory as an effective theory. Outlook: use the renormalization group flow equations to look for a UV fixed point (asymptotic safety program).
Ways around some of the problems

- **Non-renormalizability**: use Epstein-Glaser renormalization to obtain finite results for any fixed energy scale. Think of the theory as an effective theory. Outlook: use the renormalization group flow equations to look for a UV fixed point (asymptotic safety program).

- **Dynamical nature of spacetime**: make a tentative split of the metric into background and perturbation, quantize the perturbation as a quantum field on a curved background, show background independence at the end.
Ways around some of the problems

- **Non-renormalizability**: use Epstein-Glaser renormalization to obtain finite results for any fixed energy scale. Think of the theory as an effective theory. Outlook: use the renormalization group flow equations to look for a UV fixed point (asymptotic safety program).

- **Dynamical nature of spacetime**: make a tentative split of the metric into background and perturbation, quantize the perturbation as a quantum field on a curved background, show background independence at the end.

- **Diffeomorphism invariance**: use the BV formalism to do the gauge fixing. Possible difficulties: base manifold is Lorentzian and non-compact, symmetry group is infinite dimensional, so is the configuration space.
The geometry of fields

- View the space of field configurations as an infinite dimensional manifold.
The geometry of fields

- View the space of field configurations as an infinite dimensional manifold.
- **Symmetries:** action of some infinite dimensional Lie group. Go to the Lie algebra action.
The geometry of fields

- View the space of field configurations as an infinite dimensional manifold.
- Symmetries: action of some infinite dimensional Lie group. Go to the Lie algebra action.
- Look at the derived version of this: infinite dimensional graded manifolds (Sachse 2008).
The geometry of fields

- View the space of field configurations as an infinite dimensional manifold.
- Symmetries: action of some infinite dimensional Lie group. Go to the Lie algebra action.
- Look at the derived version of this: infinite dimensional graded manifolds (Sachse 2008).
- To quantize, consider deformations of such structures.
In experiment, geometric structure is probed by local observations. We have the following data:
Intuitive idea

- In experiment, geometric structure is probed by local observations. We have the following data:
 - Some region \mathcal{O} of spacetime where the measurement is performed,
Intuitive idea

- In experiment, geometric structure is probed by local observations. We have the following data:
 - Some region \mathcal{O} of spacetime where the measurement is performed,
 - An observable Φ, which we measure,
Intuitive idea

- In experiment, geometric structure is probed by local observations. We have the following data:
 - Some region \mathcal{O} of spacetime where the measurement is performed,
 - An observable Φ, which we measure,
 - We don’t measure the observable curvature at a point, but we have some smearing related to the experimental uncertainty. This is modeled by smearing with a test function. For example:

$$\Phi(f) = \int f(x)R(x).$$
Intuitive idea

- In experiment, geometric structure is probed by local observations. We have the following data:
 - Some region \(\mathcal{O} \) of spacetime where the measurement is performed,
 - An observable \(\Phi \), which we measure,
 - We don’t measure the observable curvature at a point, but we have some smearing related to the experimental uncertainty. This is modeled by smearing with a test function. For example:
 \[
 \Phi(f) = \int f(x) R(x).
 \]
 - We can think of the measured observable as a function of a perturbation of the fixed background metric: a tentative split into: \(\tilde{g}_{\mu\nu} = g_{\mu\nu} + h_{\mu\nu} \).
In experiment, geometric structure is probed by local observations. We have the following data:

- Some region \mathcal{O} of spacetime where the measurement is performed,
- An observable Φ, which we measure,
- We don’t measure the observable curvature at a point, but we have some smearing related to the experimental uncertainty. This is modeled by smearing with a test function. For example:

$$\Phi(f) = \int f(x) R(x).$$

- We can think of the measured observable as a function of a perturbation of the fixed background metric: a tentative split into: $\tilde{g}_{\mu\nu} = g_{\mu\nu} + h_{\mu\nu}$.
- Diffeomorphism transformation: move our experimental setup to a different region \mathcal{O}'.
A convenient framework to investigate conceptual problems in QFT is the **Algebraic Quantum Field Theory** (recently also perturbative AQFT).
A convenient framework to investigate conceptual problems in QFT is the Algebraic Quantum Field Theory (recently also perturbative AQFT).

A model is defined by associating to each region \mathcal{O} of Minkowski spacetime an algebra $\mathcal{A}(\mathcal{O})$ of observables (a unital involutive topological algebra, in the original framework also C^*) that can be measured in \mathcal{O}.
A convenient framework to investigate conceptual problems in QFT is the **Algebraic Quantum Field Theory** (recently also perturbative AQFT).

A model is defined by associating to each region \mathcal{O} of Minkowski spacetime an algebra $\mathcal{A}(\mathcal{O})$ of observables (a unital involutive topological algebra, in the original framework also C^*) that can be measured in \mathcal{O}.

The physical notion of subsystems is realized by the condition of **isotony**, i.e.: $\mathcal{O}_2 \supset \mathcal{O}_1 \Rightarrow \mathcal{A}(\mathcal{O}_2) \supset \mathcal{A}(\mathcal{O}_1)$.

We obtain a net of algebras.
To include effects of general relativity into QFT, one has to be able to describe quantum fields on a general class of spacetimes. The corresponding generalization of AQFT is called **locally covariant quantum field theory** and it uses the language of category theory.
To include effects of general relativity into QFT, one has to be able to describe quantum fields on a general class of spacetimes. The corresponding generalization of AQFT is called **locally covariant quantum field theory** and it uses the language of category theory.

The category **Loc**, has globally hyperbolic spacetimes $\mathcal{M} = (M, g)$ as objects and its morphisms are isometric, orientations preserving, causal embeddings $\psi : \mathcal{M} \to \mathcal{N}$.

Locally covariant quantum field theory (LCQFT)
To include effects of general relativity into QFT, one has to be able to describe quantum fields on a general class of spacetimes. The corresponding generalization of AQFT is called **locally covariant quantum field theory** and it uses the language of category theory.

The category **Loc**, has globally hyperbolic spacetimes \(\mathcal{M} \equiv (M, g) \) as objects and its morphisms are isometric, orientations preserving, causal embeddings \(\psi : \mathcal{M} \rightarrow \mathcal{N} \).

A model in LCQFT is defined by giving a functor \(\mathcal{A} \) from the category of spacetimes to the category **Obs** of observables (for example involutive topological algebras).
One of the methods to build models in LCQFT is the so called functional approach.
One of the methods to build models in LCQFT is the so called functional approach.

The main idea is to model observables as functionals on the the space $\mathcal{E}(\mathcal{M})$ of possible field configurations.
One of the methods to build models in LCQFT is the so called functional approach.

The main idea is to model observables as functionals on the space $\mathcal{E}(\mathcal{M})$ of possible field configurations.

On this space of functionals we introduce first the classical dynamics by defining a Poisson structure. Next, we use the deformation quantization to construct the non-commutative quantum algebra.
One of the methods to build models in LCQFT is the so called functional approach.

The main idea is to model observables as functionals on the space $\mathcal{E}(\mathcal{M})$ of possible field configurations.

On this space of functionals we introduce first the classical dynamics by defining a Poisson structure. Next, we use the deformation quantization to construct the non-commutative quantum algebra.

An important advantage of the deformation quantization is the fact that we work all the time on the same set of functionals, but we equip it with different algebraic structures (i.e. Poisson bracket, non-commutative \star product).
Functional approach

- There are some mathematical subtleties related with this approach. The space of field configurations is infinite dimensional, so the space of all the functionals on it is in principle too big.
Functional approach

- There are some mathematical subtleties related with this approach. The space of field configurations is infinite dimensional, so the space of all the functionals on it is in principle too big.
- The first step is to restrict oneself to functionals that are smooth. This requires some tools from calculus on infinite dimensional vector spaces.
Functional approach

- There are some mathematical subtleties related with this approach. The space of field configurations is infinite dimensional, so the space of all the functionals on it is in principle too big.

- The first step is to restrict oneself to functionals that are smooth. This requires some tools from calculus on infinite dimensional vector spaces.

- Among all the smooth functionals we can distinguish ones that are particularly relevant for physics. For example, we can consider local functionals, i.e. ones that can be written in the form: \(F(h) = \int_M f(j_x(h))(x) \), where \(h \) is a field configuration, \(f \) is a density-valued function on the jet bundle over \(M \) and \(j_x(h) \) is the jet of \(h \) at \(x \).
Another important property of a functional is its spacetime localization.
Spacetime localization of a functional

- Another important property of a functional is its spacetime localization.
- For a point $x \in \mathcal{M}$ we want to know if our given functional F is sensitive to fluctuations of field configurations at this point.

Mathematically, this can be expressed as:

$$\text{supp}\ F = \{ x \in \mathcal{M} | \forall \text{ neighbourhoods } U \text{ of } x \exists \text{ configurations } h_1, h_2 \text{ such that } F(h_1 + h_2) \neq F(h_1) \}.$$
Another important property of a functional is its *spacetime localization*.

For a point $x \in \mathcal{M}$ we want to know if our given functional F is sensitive to fluctuations of field configurations at this point.

If this is the case, we say that x belongs to the *spacetime support* of F, i.e. $x \in \text{supp}(F)$.
Another important property of a functional is its
spacetime localization.

For a point \(x \in \mathcal{M} \) we want to know if our given functional \(F \) is sensitive to fluctuations of field configurations at this point.

If this is the case, we say that \(x \) belongs to the
spacetime support of \(F \), i.e. \(x \in \text{supp}(F) \).

More precisely:
\[
\text{supp } F = \{ x \in M | \forall \text{ neighbourhoods } U \text{ of } x \exists h_1, h_2 \text{ configurations, supp } h_2 \subset U \text{ such that } F(h_1 + h_2) \neq F(h_1) \} .
\]
Another important property of a functional is its spacetime localization.

For a point $x \in \mathcal{M}$ we want to know if our given functional F is sensitive to fluctuations of field configurations at this point.

If this is the case, we say that x belongs to the spacetime support of F, i.e. $x \in \text{supp}(F)$.

More precisely:
$$\text{supp } F = \{x \in M | \forall \text{ neighbourhoods } U \text{ of } x \exists h_1, h_2 \text{ configurations, supp } h_2 \subset U \text{ such that } F(h_1 + h_2) \neq F(h_1)\}.$$

In the classical theory we will consider functionals that are compactly supported and multilocal (i.e. sums of finite products of local functionals).
For the effective theory of gravity the configuration space is \(\mathcal{E}(\mathcal{M}) = \Gamma((T^*M) \otimes 2) \). The space of compactly supported configurations is denoted by \(\mathcal{E}_c(\mathcal{M}) \). The assignment of both \(\mathcal{E}(\mathcal{M}) \) and \(\mathcal{E}_c(\mathcal{M}) \) is functorial.
For the effective theory of gravity the configuration space is \(\mathcal{E}(\mathcal{M}) = \Gamma((T^*M)^{\otimes 2}) \). The space of compactly supported configurations is denoted by \(\mathcal{E}_c(\mathcal{M}) \). The assignment of both \(\mathcal{E}(\mathcal{M}) \) and \(\mathcal{E}_c(\mathcal{M}) \) is functorial.

The space of multilical functionals will be denoted by \(\mathcal{F}(\mathcal{M}) \). \(\mathcal{F} \) is a covariant functor from \textbf{Loc} to \textbf{Vec} (the category of locally convex topological vector spaces).
Fields as natural transformations

- In the framework of locally covariant field theory [Brunetti-Fredenhagen-Verch 2003] fields are natural transformation between certain functors. For the sake of this talk let \(\Phi \in \mathcal{F} \doteq \text{Nat}(\mathcal{D}, \mathcal{F}) \), where \(\mathcal{D} \) is the functor of test function spaces \(\mathcal{D}(\mathcal{M}) = \mathcal{C}_c^\infty(\mathcal{M}) \) (one could substitute \(\mathcal{F} \) with a functor to the category of Poisson or \(C^* \) algebras).
In the framework of locally covariant field theory [Brunetti-Fredenhagen-Verch 2003] fields are natural transformation between certain functors. For the sake of this talk let $\Phi \in \mathcal{F} \doteq \text{Nat}(\mathcal{D}, \mathcal{F})$, where \mathcal{D} is the functor of test function spaces $\mathcal{D}(M) = \mathcal{C}_c^\infty(M)$ (one could substitute \mathcal{F} with a functor to the category of Poisson or C^* algebras).

The condition for Φ to be a natural transformation: $\Phi_\mathcal{O}(f)[\chi^*h] = \Phi_M(\chi*f)[h]$.

- Fields as natural transformations
Fields as natural transformations

- In the framework of locally covariant field theory [Brunetti-Fredenhagen-Verch 2003] fields are natural transformation between certain functors. For the sake of this talk let $\Phi \in \mathcal{F} \doteq \text{Nat}(\mathcal{D}, \mathcal{F})$, where \mathcal{D} is the functor of test function spaces $\mathcal{D}(M) = C_c^\infty(M)$ (one could substitute \mathcal{F} with a functor to the category of Poisson or C^* algebras).

- The condition for Φ to be a natural transformation: $\Phi_O(f)[\chi^* h] = \Phi_M(\chi*f)[h]$.

- In classical gravity we understand physical quantities not as pointwise objects but rather as something defined on all the spacetimes in a coherent way.
To implement dynamics we use a certain generalization of the Lagrange formalism of classical mechanics.
To implement dynamics we use a certain generalization of the Lagrange formalism of classical mechanics.

For general relativity, we have a Lagrangian of the form:

$$S_{(M,g)}(f)[h] = \int R[\tilde{g}]f \, d\text{vol}_{(M,\tilde{g})}, \text{ where } \tilde{g} = g + h.$$
Dynamics and symmetries

- To implement dynamics we use a certain generalization of the Lagrange formalism of classical mechanics.
- For general relativity, we have a Lagrangian of the form:
 \[S_{(M,g)}(f)[h] = \int R[\tilde{g}] f \, d\text{vol}_{(M,\tilde{g})}, \]
 where \(\tilde{g} = g + h. \)
- We need the cutoff function \(f \) because \(M \) is not compact.
To implement dynamics we use a certain generalization of the Lagrange formalism of classical mechanics.

For general relativity, we have a Lagrangian of the form:

$$S_{(M, g)}(f)[h] \doteq \int R[\tilde{g}] f \, d \text{vol}_{(M, \tilde{g})}, \text{ where } \tilde{g} = g + h.$$

We need the cutoff function f because M is not compact.

The Euler-Lagrange derivative of S is defined as

$$\langle S'_M(h_0), h \rangle = \langle L_M(f)^{(1)}(h_0), h \rangle,$$

where $f \equiv 1$ on $\text{supp} h$. The field equation is: $S'_M(h_0) = 0$. The space of solutions is denoted by $\mathcal{E}_S(M)$ and multilocal functionals on this space by $\mathcal{F}_S(M)$.
To implement dynamics we use a certain generalization of the Lagrange formalism of classical mechanics.

For general relativity, we have a Lagrangian of the form:

$$S_{(M,g)}(f)[h] = \int R[\tilde{g}]f \, \text{dvol}_{(M,\tilde{g})}, \quad \text{where} \quad \tilde{g} = g + h.$$

We need the cutoff function f because M is not compact.

The Euler-Lagrange derivative of S is defined as

$$\langle S'_M(h_0), h \rangle = \langle L_M(f)^{(1)}(h_0), h \rangle,$$

where $f \equiv 1$ on supph. The field equation is: $S'_M(h_0) = 0$. The space of solutions is denoted by $\mathcal{E}_S(M)$ and multilocal functionals on this space by $\mathcal{F}_S(M)$.

A symmetry of S is a direction in $\mathcal{E}(M)$ in which the action is constant, i.e. it is a vector field $X \in \Gamma_c(T\mathcal{E}(M))$ such that $\forall h_0 \in \mathcal{E}(M): 0 = \langle S'_M(h_0), X(h_0) \rangle$.
Consider $\Phi \in \mathcal{F}$, which is given by a family of maps $\Phi_M : \mathcal{D}(M) \to \mathcal{F}(M)$ that satisfy the naturality condition.
Consider $\Phi \in \mathcal{F}$, which is given by a family of maps $\Phi_M : \mathcal{D}(M) \rightarrow \mathcal{F}(M)$ that satisfy the naturality condition.

For each M we can choose some diffeomorphism α_M and transform Φ to a new field by relabeling maps Φ_M:

$$((\widetilde{\alpha} \Phi)(M,g))[\tilde{g}] \doteq \Phi(M, \alpha_M \ast g)[\tilde{g}],$$

where $\widetilde{\alpha}$ denotes the family $(\alpha_M)_{M \in \text{Obj}(\text{Loc})}$.
Consider $\Phi \in \mathcal{F}$, which is given by a family of maps $\Phi_M : \mathcal{O}(\mathcal{M}) \to \mathcal{F}(\mathcal{M})$ that satisfy the naturality condition.

For each \mathcal{M} we can choose some diffeomorphism α_M and transform Φ to a new field by relabeling maps Φ_M:

$$(\tilde{\alpha}\Phi)_{(M,g)}[\tilde{\mathcal{g}}] \equiv \Phi_{(M,\alpha_M \star g)}[\mathcal{g}],$$

where $\tilde{\alpha}$ denotes the family $(\alpha_M)_{\mathcal{M} \in \text{Obj}(\text{Loc})}$.

From the naturality condition follows that

$$(\tilde{\alpha}\Phi)_{(M,g)}(f)[\tilde{\mathcal{g}}] = \Phi_{(M,g)}(\alpha^{-1}_M \star f)[\alpha^*_M \tilde{\mathcal{g}}]$$

always holds (diffeomorphism covariance).
Consider $\Phi \in \mathcal{F}$, which is given by a family of maps $\Phi_M : \mathcal{D}(M) \rightarrow \mathcal{F}(M)$ that satisfy the naturality condition.

For each M we can choose some diffeomorphism α_M and transform Φ to a new field by relabeling maps Φ_M:

\[(\bar{\alpha}\Phi)(M,g)[\tilde{g}] \equiv \Phi(M,\alpha_M \ast g)[\tilde{g}],\]

where $\bar{\alpha}$ denotes the family $(\alpha_M)_{M \in \text{Obj}(\text{Loc})}$.

From the naturality condition follows that

\[(\bar{\alpha}\Phi)(M,g)(f)[\tilde{g}] = \Phi(M,g)(\alpha^{-1}_M \ast f)[\alpha^*_M \tilde{g}]\]

always holds (diffeomorphism covariance).

The diffeomorphism invariance is a condition:

\[(\bar{\alpha}\Phi)(M,g)(f)[\tilde{g}] = \Phi(M,g)(f)[\tilde{g}].\]
Let us now look at the infinitesimal version, i.e. consider
\[\alpha_M = \exp(\xi_M), \xi_M \in \mathfrak{X}(M) \cong \Gamma(TM). \]
The family \(\xi \) of “gauge” parameters acts on a field \(\Phi \) by
\[
(\xi\Phi)_{(M,g)}(f)[\g] = \left\langle (\Phi_{(M,g)}(f))^{(1)}[\g], \mathcal{L}_{\xi_M}\g \right\rangle + \Phi_{(M,g)}(\mathcal{L}_{\xi_M}f)[\g]
\]
Diffeomorphism invariance

Let us now look at the infinitesimal version, i.e. consider \(\alpha_M = \exp(\xi_M), \xi_M \in \mathcal{X}(\mathcal{M}) = \Gamma(TM) \). The family \(\vec{\xi} \) of “gauge” parameters acts on a field \(\Phi \) by

\[
(\vec{\xi}\Phi)(M,g)(f)[\tilde{g}] = \\
\left\langle (\Phi(M,g)(f))^{(1)}[\tilde{g}], \mathcal{L}_{\xi_M}\tilde{g} \right\rangle + \Phi(M,g)(\mathcal{L}_{\xi_M}f)[\tilde{g}]
\]

Diffeomorphism invariance is the statement that: \(\vec{\xi}\Phi = 0 \).
Let us now look at the infinitesimal version, i.e. consider
\(\alpha_M = \exp(\xi_M) \), \(\xi_M \in \mathfrak{X}(M) \equiv \Gamma(TM) \). The family \(\tilde{\xi} \) of “gauge” parameters acts on a field \(\Phi \) by

\[
(\tilde{\xi} \Phi)(M, g)(f)[\tilde{g}] = \left\langle (\Phi_{(M,g)}(f))^{(1)}[\tilde{g}], \mathcal{L}_{\xi_M} \tilde{g} \right\rangle + \Phi_{(M,g)}(\mathcal{L}_{\xi_M} f)[\tilde{g}]
\]

Diffeomorphism invariance is the statement that: \(\tilde{\xi} \Phi = 0 \).

Example: \(\int R[\tilde{g}] f \; d \text{vol}_{(M,\tilde{g})} \) is diffeomorphism invariant, but

\[
\int R[\tilde{g}] f \; d \text{vol}_{(M,\tilde{g})}
\]

is not.
A general method to quantize theories with local symmetries is the so called Batalin-Vilkovisky (BV) formalism. Here we present its version proposed by [K. Fredenhagen, K.R., CMP 2011].
A general method to quantize theories with local symmetries is the so called Batalin-Vilkovisky (BV) formalism. Here we present its version proposed by [K. Fredenhagen, K.R., CMP 2011].

Differences to the approaches presented up to now: we work in Lorentzian QFT, the base manifold is non-compact, we take seriously the infinite dimensional character of the configuration space.
A general method to quantize theories with local symmetries is the so called Batalin-Vilkovisky (BV) formalism. Here we present its version proposed by [K. Fredenhagen, K.R., CMP 2011].

Differences to the approaches presented up to now: we work in Lorentzian QFT, the base manifold is non-compact, we take seriously the infinite dimensional character of the configuration space.

Objective: characterize \mathcal{F}_S, the space of gauge invariant fields on the space of solutions of EOM’s. More precisely, we consider elements of $\mathcal{F} := \text{Nat}(\mathcal{D}, \mathcal{F})$, which are invariant under diffeomorphisms ($\xi \Phi = 0$) and take quotient by the ideal consisting of fields satisfying $\Phi_M(f)(h) = 0$, for all M, $f \in \mathcal{D}(M)$, $h \in \mathcal{E}_S(M)$.
Idea: note that $\mathcal{E}_S(\mathcal{M})$ locally can be seen as the critical manifold of the Lagrangian $S_\mathcal{M}(f) : \mathcal{E}(\mathcal{M}) \to \mathbb{R}$ (zero locus of $S'_\mathcal{M}$).
Idea: note that $E_S(M)$ locally can be seen as the critical manifold of the Lagrangian $S_M(f) : \mathcal{E}(M) \to \mathbb{R}$ (zero locus of S'_M).

We can apply standard methods and characterize the space of on-shell fields by its Koszul-Tate resolution. However, one has to be a little bit careful about the topologies and completions, since we work with infinite dimensional spaces!
Idea: note that $\mathcal{E}_s(\mathcal{M})$ locally can be seen as the critical manifold of the Lagrangian $S_{\mathcal{M}}(f) : \mathcal{E}(\mathcal{M}) \to \mathbb{R}$ (zero locus of $S'_{\mathcal{M}}$).

We can apply standard methods and characterize the space of on-shell fields by its Koszul-Tate resolution. However, one has to be a little bit careful about the topologies and completions, since we work with infinite dimensional spaces!

The space of invariants under a lie algebra action is given by the 0th cohomology of the Chevalley-Eilenberg complex, so we can use this structure to characterize fields that are gauge invariant.
Idea: note that $E_S(\mathcal{M})$ locally can be seen as the critical manifold of the Lagrangian $S_M(f) : \mathcal{E}(\mathcal{M}) \rightarrow \mathbb{R}$ (zero locus of S'_M).

We can apply standard methods and characterize the space of on-shell fields by its Koszul-Tate resolution. However, one has to be a little bit careful about the topologies and completions, since we work with infinite dimensional spaces!

The space of invariants under a lie algebra action is given by the 0th cohomology of the Chevalley-Eilenberg complex, so we can use this structure to characterize fields that are gauge invariant.

Combining the Koszul-Tate and the Chevalley-Eilenberg complex we obtain the BV complex. Its 0th cohomology characterizes then the space of gauge invariant on-shell fields.
We will denote the underlying algebra of the BV complex by \mathcal{BV}. Recall that we are working with fields, so elements of \mathcal{BV} are in particular functions from $\mathcal{D}(\mathcal{M})$ to a graded algebra $\mathcal{BV}(\mathcal{M})$, constructed in a “standard” way.
We will denote the underlying algebra of the BV complex by \(BV \). Recall that we are working with fields, so elements of \(BV \) are in particular functions from \(\mathcal{D}(M) \) to a graded algebra \(BV(M) \), constructed in a “standard” way.

\(BV(M) \) can be seen as the algebra of functions on \(T^*\overline{E}(M) \), where \(\overline{E}(M) \) is a certain graded manifold (in the simplest case: \(\overline{E}(M) = E(M) \oplus X(M)[1] \)).
We will denote the underlying algebra of the BV complex by \mathcal{BV}. Recall that we are working with fields, so elements of \mathcal{BV} are in particular functions from $\mathcal{D}(\mathcal{M})$ to a graded algebra $\mathcal{BV}(\mathcal{M})$, constructed in a “standard” way.

$\mathcal{BV}(\mathcal{M})$ can be seen as the algebra of functions on $T^*\overline{\mathcal{E}}(\mathcal{M})$, where $\overline{\mathcal{E}}(\mathcal{M})$ is a certain graded manifold (in the simplest case: $\overline{\mathcal{E}}(\mathcal{M}) = \mathcal{E}(\mathcal{M}) \oplus \mathcal{X}(\mathcal{M})[1]$).

We call $\overline{\mathcal{E}}(\mathcal{M})$ the extended configuration space.
We will denote the underlying algebra of the BV complex by \mathcal{BV}. Recall that we are working with fields, so elements of \mathcal{BV} are in particular functions from $\mathcal{D}(\mathcal{M})$ to a graded algebra $\mathcal{BV}(\mathcal{M})$, constructed in a “standard” way.

$\mathcal{BV}(\mathcal{M})$ can be seen as the algebra of functions on $T^*\overline{\mathcal{E}}(\mathcal{M})$, where $\overline{\mathcal{E}}(\mathcal{M})$ is a certain graded manifold (in the simplest case: $\overline{\mathcal{E}}(\mathcal{M}) = \mathcal{E}(\mathcal{M}) \oplus \mathcal{X}(\mathcal{M})[1]$).

We call $\overline{\mathcal{E}}(\mathcal{M})$ the extended configuration space.

On $\mathcal{BV}(\mathcal{M})$ we have a natural structure of a Schouten bracket $\{.,.\}$ (the antibracket), which extends to \mathcal{BV}.
We will denote the underlying algebra of the BV complex by \mathcal{BV}. Recall that we are working with fields, so elements of \mathcal{BV} are in particular functions from $\mathcal{D}(M)$ to a graded algebra $\mathcal{BV}(\mathcal{M})$, constructed in a “standard” way.

$\mathcal{BV}(\mathcal{M})$ can be seen as the algebra of functions on $T^*\mathcal{E}(\mathcal{M})$, where $\mathcal{E}(\mathcal{M})$ is a certain graded manifold (in the simplest case: $\mathcal{E}(\mathcal{M}) = \mathcal{E}(\mathcal{M}) \oplus \mathcal{X}(\mathcal{M})[1]$).

We call $\mathcal{E}(\mathcal{M})$ the extended configuration space.

On $\mathcal{BV}(\mathcal{M})$ we have a natural structure of a Schouten bracket $\{.,.\}$ (the antibracket), which extends to \mathcal{BV}.

The classical BV differential can be written as

$$s\Phi_M(f) = \{\Phi_M(f), \tilde{S}_M\} + \Phi_M(\mathcal{L}Cf),$$

where $\tilde{S} \in \mathcal{BV}$ is the so called extended action and C is a ghost.
Equations of motion and Poisson bracket

As an output of the classical theory we have the extended configuration space \overline{E} and the extended action \tilde{S}. Now we apply to this data the deformation quantization.
As an output of the classical theory we have the extended configuration space \mathcal{E} and the extended action \tilde{S}. Now we apply to this data the deformation quantization.

We can Taylor expand the action around an arbitrary background metric g and obtain $\tilde{S}_M = S_0 g + V_g$, where $S_0 g$ is an at most quadratic function on $\mathcal{E}(M)$.
Equations of motion and Poisson bracket

- As an output of the classical theory we have the extended configuration space \mathcal{E} and the extended action \tilde{S}. Now we apply to this data the deformation quantization.
- We can Taylor expand the action around an arbitrary background metric g and obtain $\tilde{S}_M = S_{0g} + V_g$, where S_{0g} is an at most quadratic function on $\mathcal{E}(M)$.
- For each globally hyperbolic background g, we have the retarded and advanced Green’s functions Δ^R_A for the EOM’s derived from S_{0g}.
As an output of the classical theory we have the extended configuration space \mathcal{E} and the extended action \tilde{S}. Now we apply to this data the deformation quantization.

We can Taylor expand the action around an arbitrary background metric g and obtain $\tilde{S}_M = S_{0g} + V_g$, where S_{0g} is an at most quadratic function on $\mathcal{E}(\mathcal{M})$.

For each globally hyperbolic background g, we have the retarded and advanced Green’s functions $\Delta^R_A g$ for the EOM’s derived from S_{0g}.

Using this input, we define the free Poisson bracket on $\mathcal{BV}(\mathcal{M})$:

$$\{F, G\}_0^g = \left\langle F^{(1)}, \Delta_g G^{(1)} \right\rangle, \quad \Delta_g = \Delta^R_A g - \Delta^A_R g,$$
Equations of motion and Poisson bracket

- As an output of the classical theory we have the extended configuration space \mathcal{E} and the extended action \tilde{S}. Now we apply to this data the deformation quantization.
- We can Taylor expand the action around an arbitrary background metric g and obtain $\tilde{S}_M = S_{0g} + V_g$, where S_{0g} is an at most quadratic function on $\mathcal{E}(\mathcal{M})$.
- For each globally hyperbolic background g, we have the retarded and advanced Green’s functions $\Delta_g^{R/A}$ for the EOM’s derived from S_{0g}.
- Using this input, we define the free Poisson bracket on $\mathcal{BV}(\mathcal{M})$:
 \[
 \{F, G\}_0^g = \left\langle F^{(1)}, \Delta_g G^{(1)} \right\rangle, \quad \Delta_g = \Delta_g^R - \Delta_g^A,
 \]
- This Poisson structure can be naturally extended to a Poisson bracket $\{., .\}_0$ on \mathcal{BV}.

Katharina Rejzner
QG from LCQFT
We start with the deformation quantization of $\mathcal{BV}, \{.,.\}_0$, which is done in the standard way and provides a \star-product with the following properties:

$$F \star G \xrightarrow{\hbar \to 0} F \cdot G,$$

$$[F, G]_\star := F \star G - F \star G \xrightarrow{\hbar \to 0} \{F, G\}_0.$$
We start with the deformation quantization of $(\mathcal{BV}, \{., .\}_0)$, which is done in the standard way and provides a \star-product with the following properties:

$$F \star G \xrightarrow{\hbar \to 0} F \cdot G,$$

$$[F, G]_\star := F \star G - F \star G \xrightarrow{\hbar \to 0} \{F, G\}_0.$$

To introduce the interaction one has to define the so called time ordered products. Formally, they are the coefficients in expansion of the S-matrix in powers of the interaction term V_g, i.e.:

$$S(V_g) = \sum_{n=0}^{\infty} \frac{1}{n!} \mathcal{T}_n(V_g \otimes^n).$$
We start with the deformation quantization of $(\mathcal{BV}, \{., .\}_0)$, which is done in the standard way and provides a \star-product with the following properties:

$$F \star G \xrightarrow{\hbar \to 0} F \cdot G,$$

$$[F, G]_\star := F \star G - F \star G \xrightarrow{\hbar \to 0} \{F, G\}_0.$$

To introduce the interaction one has to define the so called time ordered products. Formally, they are the coefficients in expansion of the S-matrix in powers of the interaction term V_g, i.e.:

$$S(V_g) = \sum_{n=0}^{\infty} \frac{1}{n!} \mathcal{T}_n(V_g^\otimes n).$$

Because of the singularity structure of the Feynman propagator, time ordered products of local non-linear functionals are well defined only for arguments with pairwise disjoint supports. In particular the above formula would not make sense for local V_g.
Since most of interaction terms relevant in physics are local, we need to extend maps \mathcal{T}_n to local arguments with arbitrary supports. To this end we use the so called Epstein-Glaser renormalization. Mathematically it reduces to extension of certain distributions.

$$\mathcal{R}_{\mathcal{V}}(\Phi)(M,g)(f) = (e^{\mathcal{V}g\mathcal{T}}) \ast -1 \ast (e^{\mathcal{V}g\mathcal{T}} \mathcal{T}_\Phi(M,g)(f)).$$
Since most of interaction terms relevant in physics are local, we need to extend maps \mathcal{T}_n to local arguments with arbitrary supports. To this end we use the so called Epstein-Glaser renormalization. Mathematically it reduces to extension of certain distributions.

As a result, we obtain a family of maps \mathcal{T}_n from $\mathcal{BV}_{loc}^\otimes n$ to a certain completion of \mathcal{BV}. We have shown that these maps can be seen as arising from a binary product $\cdot_{\mathcal{T}}$ defined on a certain domain containing \mathcal{F}_{loc} and $S(V_g) = e^{Vg}_{\mathcal{T}}$ is a time-ordered exponential with respect to this product.
Interaction

- Since most of interaction terms relevant in physics are local, we need to extend maps \mathcal{T}_n to local arguments with arbitrary supports. To this end we use the so called Epstein-Glaser renormalization. Mathematically it reduces to extension of certain distributions.
- As a result, we obtain a family of maps \mathcal{T}_n from $\mathcal{BV}_\text{loc}^\otimes n$ to a certain completion of \mathcal{BV}. We have shown that these maps can be seen as arising from a binary product $\cdot_{\mathcal{T}}$ defined on a certain domain containing \mathcal{F}_loc and $S(V_g) = e^{V_g}_{\mathcal{T}}$ is a time-ordered exponential with respect to this product.
- This allows to define the interacting fields by means of the Bogoliubov formula:

\[
(R_V(\Phi))_{(M,g)}(f) \doteq (e^{V_g}_{\mathcal{T}})^{-1} \ast (e^{V_g}_{\mathcal{T}} \cdot_{\mathcal{T}} \Phi_{(M,g)}(f)).
\]
In the framework of [K. Fredenhagen, K.R., CMP 2013], the gauge invariance of the S-matrix is guaranteed by the so called quantum master equation (QME):

$$\{e^{\mathcal{V}g}_T, S_{0g}\} = 0,$$

where $\{.,.\}$ is the Schouten bracket.
In the framework of [K. Fredenhagen, K.R., CMP 2013], the gauge invariance of the S-matrix is guaranteed by the so called quantum master master equation (QME):

$$\{e^V_{S0g}, S_{0g}\} = 0,$$

where $\{.,.\}$ is the Schouten bracket.

With the use of Master Ward Identity [F.Brennecke, M.Duetsch, RMP 2008], this condition can be rewritten as

$$\frac{1}{2}\{S_{0g} + V_g, S_{0g} + V_g\} = i\hbar \triangle V_g,$$

where $\triangle V_g$ is a certain local linear operator, which we identify with the renormalized BV Laplacian.
If the QME holds, then gauge invariant quantum observables are recovered as the 0th cohomology of the quantum BV operator \hat{s}, which acts on quantum fields by

$$(\hat{s}\Phi)_M(f) = e^{-V_g} \cdot \{ e^{V_g} \cdot \Phi_M(f), S_0g \} + \Phi_M(\mathcal{L}c f),$$

where C is the ghost field.
If the QME holds, then gauge invariant quantum observables are recovered as the 0th cohomology of the quantum BV operator \hat{s}, which acts on quantum fields by

$$(\hat{s}\Phi)_M(f) = e^{-V_g \cdot \tau} \{ e^{V_g \cdot \tau} \Phi_M(f), S_{0g} \} + \Phi_M(\mathcal{L} cf),$$

where C is the ghost field.

Again, using the MWI, this can be rewritten as

$$\hat{s}\Phi_M(f) = \{ \Phi_M(f), S_{0g} + V_g \} + \Phi_M(\mathcal{L} cf) - i\hbar \Delta V_g (\Phi_M(f)).$$
Relative Cauchy evolution

Let \(\mathcal{N}_+ \) and \(\mathcal{N}_- \) be two spacetimes that embed into two other spacetimes \(\mathcal{M}_1 \) and \(\mathcal{M}_2 \) around Cauchy surfaces, via causal embeddings given by \(\chi_{k,\pm}, k = 1, 2 \).
Let N_+ and N_- be two spacetimes that embed into two other spacetimes M_1 and M_2 around Cauchy surfaces, via causal embeddings given by $\chi_{k,\pm}, k = 1, 2$.

Denote $\alpha_{\chi_{i,\pm}} = A \chi_{k,\pm}, k = 1, 2$.

\[\beta = \alpha_{\chi_1,\pm} + \alpha_{-1,\chi_2,\pm} + \alpha_{\chi_2,\pm} - \alpha_{-1,\chi_1,\pm} \] is an automorphism of $A(M_1)$. It depends only on the spacetime between the two Cauchy surfaces $M_1 M_2$.

\[N_+ \]
\[\chi_{1,+} \]
\[M_1 \]
\[\chi_{1,-} \]
\[\chi_{2,+} \]
\[M_2 \]
\[\chi_{2,-} \]
\[N_- \]
Relative Cauchy evolution

- Let \mathcal{N}_+ and \mathcal{N}_- be two spacetimes that embed into two other spacetimes \mathcal{M}_1 and \mathcal{M}_2 around Cauchy surfaces, via causal embeddings given by $\chi_{k,\pm}, k = 1, 2$.
- Denote $\alpha_{\chi_{i,\pm}} = \mathcal{A}\chi_{k,\pm}, k = 1, 2$.
- From the time-slice axiom follows that $\beta = \alpha_{\chi_{1,\pm}}^{-1} \alpha_{\chi_{2,\pm}} \alpha_{\chi_{2,-}}^{-1} \alpha_{\chi_{1,-}}$ is an automorphism of $\mathcal{A}(\mathcal{M}_1)$.

\[\begin{array}{c}
\begin{array}{c}
\mathcal{N}_+ \\
\chi_{1+} \\
\mathcal{M}_1 \\
\chi_{1-} \\
\mathcal{N}_- \\
\chi_{2+} \\
\mathcal{M}_2 \\
\chi_{2-}
\end{array}
\end{array} \]
relative Cauchy evolution

- Let \mathcal{N}_+ and \mathcal{N}_- be two spacetimes that embed into two other spacetimes \mathcal{M}_1 and \mathcal{M}_2 around Cauchy surfaces, via causal embeddings given by $\chi_{k,\pm}$, $k = 1, 2$.
- Denote $\alpha_{\chi_{i,\pm}} \doteq \mathcal{A}\chi_{k,\pm}$, $k = 1, 2$.
- From the time-slice axiom follows that $\beta = \alpha_{\chi_{1,\pm}} \alpha_{\chi_{2,\pm}}^{-1} \alpha_{\chi_{2,-}}^{-1} \alpha_{\chi_{1,-}}^{-1}$ is an automorphism of $\mathcal{A}(\mathcal{M}_1)$.
- It depends only on the spacetime between the two Cauchy surfaces.
Background independence

Let $\mathcal{M}_1 = (M, g_1)$ and $\mathcal{M}_2 = (M, g_2)$, where $(g_1)_{\mu\nu}$ and $(g_2)_{\mu\nu}$ differ by a (compactly supported) symmetric tensor $h_{\mu\nu}$ with $\text{supp}(h) \cap J^+(\mathcal{N}_+) \cap J^-(\mathcal{N}_-) = \emptyset$,
Background independence

Let $\mathcal{M}_1 = (M, g_1)$ and $\mathcal{M}_2 = (M, g_2)$, where $(g_1)_{\mu\nu}$ and $(g_2)_{\mu\nu}$ differ by a (compactly supported) symmetric tensor $h_{\mu\nu}$ with

$$\text{supp}(h) \cap J^+(\mathcal{N}_+) \cap J^-(\mathcal{N}_-) = \emptyset,$$

$$\Theta_{\mu\nu}(x) \doteq \frac{\delta \beta_h}{\delta h_{\mu\nu}(x)} \bigg|_{h=0}$$

is a derivation valued distribution which is covariantly conserved.
Let $\mathcal{M}_1 = (M, g_1)$ and $\mathcal{M}_2 = (M, g_2)$, where $(g_1)_{\mu\nu}$ and $(g_2)_{\mu\nu}$ differ by a (compactly supported) symmetric tensor $h_{\mu\nu}$ with $
abla\text{supp}(h) \cap J^+(\mathcal{N}_+) \cap J^-(\mathcal{N}_-) = \emptyset$,

$\Theta_{\mu\nu}(x) \doteq \left. \frac{\delta \beta_h}{\delta h_{\mu\nu}(x)} \right|_{h=0}$ is a derivation valued distribution which is covariantly conserved.

The infinitesimal version of the background independence is a condition: $\Theta_{\mu\nu} = 0$.
Theorem [Brunetti, Fredenhagen, K.R. 2013]

The functional derivative $\Theta_{\mu\nu}$ of the relative Cauchy evolution can be expressed as

$$\Theta_{\mu\nu}(\Phi_M(f)) \overset{o.s.}{=} [RV_1(\Phi_M(f)), RV_1(T_{\mu\nu})]_*, $$

where $T_{\mu\nu}$ is the stress-energy tensor of the extended action and one can define the time-ordered products in such a way that $T_{\mu\nu} = 0$ holds, so the interacting theory is background independent.
Conclusions

- We have constructed a consistent model of perturbative quantum gravity within the framework of locally covariant quantum fields theory.
Conclusions

- We have constructed a consistent model of perturbative quantum gravity within the framework of locally covariant quantum fields theory.

- In our framework, physical diffeomorphism invariant quantities are constructed as natural transformations between certain functors. We have proposed a quantization prescription for such objects, which makes use of the BV formalism.
Conclusions

- We have constructed a consistent model of perturbative quantum gravity within the framework of locally covariant quantum fields theory.

- In our framework, physical diffeomorphism invariant quantities are constructed as natural transformations between certain functors. We have proposed a quantization prescription for such objects, which makes use of the BV formalism.

- To quantize the theory, we make a tentative split into a free and interacting theory. We quantize the free theory first and then use the Epstein-Glaser renormalization to introduce the interaction.
Conclusions

- We have constructed a consistent model of perturbative quantum gravity within the framework of locally covariant quantum fields theory.

- In our framework, physical diffeomorphism invariant quantities are constructed as natural transformations between certain functors. We have proposed a quantization prescription for such objects, which makes use of the BV formalism.

- To quantize the theory, we make a tentative split into a free and interacting theory. We quantize the free theory first and then use the Epstein-Glaser renormalization to introduce the interaction.

- We have shown, using the relative Cauchy evolution, that our theory is background independent, i.e. independent of the split into free and interacting part.
Thank you for your attention!