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Abstract

The partition function of the six vertex model on the finite lattice with domain
wall boundary conditions is considered. Starting from Hankel determinant repre-
sentation, some alternative representations for the partition function are given. It
is argued that one of these representations can be rephrased in the language of the
angular quantization method applied to certain fermionic model.
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The six-vertex model on a square lattice, with domain wall boundary conditions

(DWBC), was introduced and solved by Korepin and Izergin [1, 2]. This model, with

these very peculiar boundary conditions, (as opposed to, e.g., periodic ones [3, 4, 5])

is particularly interesting, both for its relationship with the theory of Alternating Sign

Matrices [6, 7], and with some tiling problems [8], and for the fact that bulk quantities

are sensitive to boundary conditions even in the thermodynamic limit [9, 10]. This last

question is in turn related to the so called Arctic Circle Theorem [11].

An explicit expression for the partition function of the model on an N × N square

lattice, ZN , was given in [2, 12] in terms of the determinant of an N ×N Hankel matrix.

Such representation, in connection with semi-infinite Toda chain and with random matrix

models, has been sucessfully used in [9, 10] to evaluate the bulk free energy of the model.

Recently, the Izergin-Korepin determinant formula has been generalized to the case of

boundary one-point correlation functions (polarizations) [13, 14]. However such expres-

sions turns out to be too intricate, preventing any further, more explicit, answer, except

for very particular cases. This may indicate in fact that the representation of partition

function and correlators in term of Hankel determinants, even if a natural outcome from

the analysis of the more general inhomogeneous model, is not the most convenient form

to investigate its homogeneous version (the most interesting from the point of view of

statistical mechanics). This suggests to look for other approaches.

In the present letter we derive some alternative determinant representations for the

partition function starting from the Hankel determinant formula, and we argue that one

of these representations can quite naturally be rephrased in the language of the angular

quantization method applied to certain fermionic model. First, following the lines sug-

gested in Ref. [15], we express the partition function as the Fredholm determinant of an

integrable integral operator. Such representations has proven fruitful in the investigation

of correlation functions of integrable models [16]. Second, we give one more representa-

tion for the partition function as the ordinary determinant of a N ×N symmetric matrix.

Its entries, in contrast to those of the original Hankel matrix, can be explicitely evaluated

with a neat result. Finally, by closely investigating this last representation, we suggest

how the core of the partition function can be reinterpreted as the trace of some boost-

like transformation over the Fock space of N free fermions. Due to this interpretation,

it turns out clear that the whole construction fits well into the language of the angular

quantization approach, widely used in integrable quantum field theory. We believe this

connection with the angular quantization approach may turn out useful in the quest for

a systematic derivation of the correlation functions of the model.

With no loss of generality, we can restrict ourselves to the case of the disordered (or

critical) regime. The procedure we follow, suggested by [15, 17], will be only sketched.
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By analytic continuation our results can be extended to all regimes of the model. The

disordered regime of the six-vertex model is characterized by values of the quantity ∆ ≡
(a2+b2−c2)/2ab in the interval −1 < ∆ < 1, where the Boltzmann vertex weights a, b, c,

are conveniently parametrized in terms of the spectral parameter λ and the deformation

parameter η as follow:

a = sin(λ + η) , b = sin(λ − η) , c = sin(2η) , (1)

with λ, η such that the Boltzmann weights are real and positive. The partition function

ZN of the model on a N × N square lattice with DWBC has the following expression

[2, 12]:

ZN =
[sin(λ − η) sin(λ + η)]N

2

N−1∏
m=0

(m!)2

τN (2)

where τN is the determinant of an N × N Hankel matrix:

τN = detN

[
∂j+k

λ

sin(2η)

sin(λ − η) sin(λ + η)

]
, j, k = 0, 1, . . . , N − 1. (3)

Introducing the notation

φ± ≡ λ ± η , (4)

and using the identities

detN

[
∂j+k

φ e−iφf(φ)
]

= detN

[
e−iφ∂j+k

φ f(φ)
]

= e−iNφdetN

[
∂j+k

φ f(φ)
]

(5)

we may factorize the Hankel determinant, and write:

τN = detN [e−iφ−A− − e−iφ+A+]

= e−iNφ− detN [A−] detN [1 − ζA−1
− A+] (6)

where ζ = ei(φ−−φ+) = e−2iη and‡

(A±)jk = ∂j+k
±

[
1

sin φ±

]
j, k = 0, 1, . . . , N − 1. (7)

Using standard techniques related to the theory of orthogonal polynomials [15, 17], both

the determinant and the inverse of a matrix of the form (7) can be explicitely worked

out. The whole approach is founded on the possibility of expressing the first element of

matrix (7), (Aφ)00, as a Laplace transform; in our case we may write:

1

sin φ
=

∫ +∞

−∞
eφx

1 + eπx
dx , (8)

‡Whenever no ambiguity could arise, we shall use ± instead of φ± in subscripts and superscripts
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therefore identifying an integration measure,

µ(φ)(x) =
eφx

1 + eπx
, (9)

which (for 0 < φ < π , indeed fulfilled in the critical regime) decays exponentially fast as

x → ±∞ and allows to define a complete set of orthogonal polynomials. In our specific

case, the polynomials P(φ)
n (x) associated to measure (9) essentially coincide with the so

called Meixner-Pollaczek polynomials [18, 19], P (λ)
n (x; φ), where the parameter λ (not to

be confused with the spectral parameter appearing in the Boltzmann weights, eq. (1))

must be set equal to the value 1/2:

P(φ)
n (x) =

√
sin φ P (1/2)

n

(
x

2
; φ

)

=
√

sin φ einφ
2F1

( −n, 1/2 + ix/2

1
1 − e−2iφ

)
(10)

They satisfy the following orthogonality relation:∫ +∞

−∞
P(φ)

n (x) P(φ)
m (x) µ(φ)(x) dx = δnm , (11)

the three-terms recurrence relation:

(n + 1)P(φ)
n+1(x) = [(2n + 1) cos φ + x sin φ]P(φ)

n (x) − nP(φ)
n−1(x) , (12)

and the Christoffel-Darboux identity:

N−1∑
k=0

P(φ)
k (x) P(φ)

k (y) =
N

sin φ

P(φ)
N (x)P(φ)

N−1(y) − P(φ)
N−1(x)P(φ)

N (y)

x − y
. (13)

For future refererence, let us moreover introduce kj = (sin φ)j+ 1
2 /j!, the leading coefficient

of xj in P(φ)
j (x).

Once the measure (9) has been identified, it is evident that the determinant of ma-

trix Aφ may be rewritten as the determinant of the matrix built from the moments of

the integration weight µφ(x). Using standard properties of orthogonal polynomials one

readily evaluates

detN [Aφ] = detN

[∫ +∞

−∞
1

kjkk

P(φ)
j (x)P(φ)

k (x) µ(φ)(x)

]
dx

=
1

[sin φ]N2

N−1∏
m=0

(m!)2 . (14)

Moreover the inverse matrix A−1
φ can be simply expressed in terms of derivatives of the

kernel

K
(φ)
N (x, y) =

N−1∑
k=0

P(φ)
k (x) P(φ)

k (y) (15)
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since the following relation holds:

K
(φ)
N (x, y) =

N−1∑
j,k=0

(A−1
φ )jk xj yk (16)

provided that the kernel K
(φ)
N (x, y) is built just in terms of the orthogonal polynomials

relative to the measure µ(φ)(x) exactly given by the Laplace transform of (Aφ)00. A last

ingredient of the whole construction resides in the following: let us introduce the linear

integral operator VN , whose kernel is given by

VN(x, y) = K
(−)
N (x, y)µ(+)(y)

∣∣∣
R

, (17)

and the matrix:

(W )jk =
∫ +∞

−∞
P(−)

j (x)P(−)
k (x) µ(+)(x) dx , (18)

which is in fact semi-infinite, but will be considered in the following as truncated to its

first N × N entries, j, k = 0, 1, . . . , N − 1. The following identities

trN

[
(A−1

− A+)m
]

= tr [(VN)m] = trN [(W )m] (19)

are easily proven for any positive integer power m, and imply

detN

[
1 − ζ A−1

− A+

]
= det [1 − ζ VN ] = detN [1 − ζ W ] . (20)

Using all these ingredients, the partition function of the six-vertex model with DWBC

on the N × N lattice, eq. (2), may therefore equivalently be expressed in terms of a

Fredholm determinant:

ZN = [sin φ+]N
2

e−iNφ− det [1 − ζ VN ] (21)

where the kernel of integral operator VN may be written more explicitely as:

VN(x, y) =
N

sin φ−

P(−)
N (x)P(−)

N−1(y) −P(−)
N−1(x)P(−)

N (y)

x − y
µ(+)(x)

∣∣∣∣∣∣
R

; (22)

its integrability in the sense of Ref. [16] is self-evident.

It is worth emphasizing that in the rational case, obtained by substituting λ → ελ,

η → εη, suitably rescaling variables and vertex weights, and taking the limit ε → 0, the

measure and polynomials become exactly Laguerre ones. The result of [15] is therefore

reproduced, but we have been able here to generalize it to the whole disordered regime,

still preserving the integrable structure of the linear integral operator.

Analogous expressions can be given in other regimes, namely antiferroelectric and

ferroelectric ones, through analytic continuation, in terms of Meixner polynomials [18].

The main difference resides in the discrete character of the measure in these cases.
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From the previous discussion it appears that a pre-eminent role is played by Meixner-

Pollaczek polynomials. It is to be mentioned these polynomials had already appeared in

connection with the free-fermion six vertex model [20, 21]; however in our case they arise

for generic vertex weights.

Let us now give one more alternative representation for the partition function of the

six-vertex models with DWBC on the N×N lattice, this time in terms of the determinant

of an N dimensional matrix:

ZN = [sin φ+]N
2

e−iNφ− detN [1 − ζW ] (23)

with W given in eq. (18). Interestingly enough, the integral appearing in the definition of

the matrix elements of W can be evaluated explicitely in terms of the Boltzmann weights

of the model, eq.(1), with a result of pleasing simplicity:

Wjk =
b

a

(
c

a

)j+k

2F1

( −j, −k

1

(
b

c

)2 )
, (24)

where the truncated hypergeometric function is in fact Meixner polynomial [18].

Using a “quantum mechanical” picture, the connection between the two proposed

representations, eq. (21) and (23) is quite natural: let us consider a one dimensional

quantum particle in a confining potential, such that its energy eigenfunctions are just

given by P(−)
N (x)

√
µ(−)(x). Let us moreover introduce the operator % which in the “coor-

dinates” representation acts multiplicatively as µ(+)(x)/µ(−)(x) = e2i(φ+−φ−)x. We have

thus shown that the partition function of the six-vertex model on the N×N square lattice

with DWBC is essentially given (up to trivial prefactors) by the determinant of the pro-

jection of operator 1−% onto the subspace of the N lowest energy levels of the considered

quantum mechanical system. Working in the “coordinates” or “energy” representation

gives rise to expressions (21) and (23) respectively. In the coordinate representation op-

erator % is diagonal, but of course the projector on the N lowest levels, K
(−)
N (x, y)µ(−)(y),

is not. Conversely, in the energy representation, the projector is manifestly diagonal,

while % is not, its matrix element on the jth, kth eigenlevel 〈j|%|k〉 being given just by

(W )jk, eq. (18).

We shall end by discussing a reinterpretation of the determinant representation for the

partition function ZN , inspired by the finite size determinant formula, eq. (23). From eq.

(24), and the definition of hypergeometric function, follows one more representation for

matrix W , in a Gauss decomposition form, i.e., as a product of lower-triangular, diagonal

and upper-triangular matrices:

W = eγJ+β2J0eγJ− , (25)

where β = b/a and γ = c/a, see eq. (1), and matrices J+, J0 and J− have entries

(J+)nm = n δn−1,m, (J0)nm = (n + 1/2) δn,m, (J−)nm = (n + 1) δn+1,m . (26)
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It is useful to rewrite eq. (23) in the form

ZN = [sin(λ + η)]N
2

e−iN(λ−η) detN

(
I + e2ηK ′

N

)
, (27)

where matrix K ′
N is defined as

K ′
N = KN + iξI, KN =

1

2η
ln

(
eγJ+β2J0eγJ−

)
. (28)

with ξ = (π/2η) − 1. Note that, as emphasized by the notation, and in contrast to the

case of matrix W , the entries of matrix KN (and hence of K ′
N ) depend on N .

If we now consider more closely eq. (27), we find that the first factor can be absorbed

by a suitable normalization of vertex weights, while the second factor is just a “boundary

term”, related to the standard symmetric form of the six-vertex model R-matrix, and

would be absent if Uq(sl2)-invariant R-matrix [22] were used instead. Thus, the only

non trivial quantity contributing to the partition function is the last factor in (27). The

important point which we would like to stress here is that such a determinant formula is

typical in evaluating traces over Fock space of N canonical Fermi operators [23]:

Tr
(
e2ηK′

N

)
= detN

(
I + e2ηK ′

N

)
. (29)

Here K′
N denotes quantum operator

K′
N = KN + iξNN , (30)

where

KN =
N−1∑

n,m=0

c†n(KN)nmcm , NN =
N−1∑
n=0

c†ncn , (31)

and, clearly, [KN ,NN ] = 0. Note that operator KN (and hence K′
N), though bilinear in

fermions, is essentially non-local. However, as argued in the following, KN has a simple

interpretation as boost operator for a finite size system. Even though the entries of

matrix KN governing the structure of operator KN are of overwhelming complexity, they

simplify considerably for infinite N . Indeed in this case matrices J±,0 appearing in eq.

(28) are semi-infinite, and now satisfy su(1, 1) algebra commutation relations

[J−, J+] = 2J0, [J±, J0] = ∓J± . (32)

Then, due to standard arguments [24] one has

K =
∞∑

n=0

(n + 1) hn,n+1, (33)

with free-fermion Hamiltonian density

hn,n+1 =
1

sin φ−

{
c†ncn+1 + c†n+1cn − cos φ−

(
c†ncn + c†n+1cn+1

)}
. (34)
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Formula (33) is standard expression for boost operator as it usually appears in integrable

lattice models, with Hamiltonian expressed simply as a sum of hn,n+1’s [25]. In our

case the corresponding model is manifestly free-fermionic, both for finite and infinite N .

This is to be interpreted as a consequence of the specific choice of boundary conditions

(DWBC) applied to the six-vertex model with arbitrary vertex weigths. The important

point we want to stress here is that the whole construction, especially eq. (29) with

operator KN regarded as a boost operator, fits well into the language of the angular

quantization approach, widely used in integrable models of (1+1)-dimensional Quantum

Field Theory for calculation of correlation functions [26]. We believe this treatment

of the determinant representation for the partition function, as possibly arising from

some angular quantization scheme, could be fruitfully applied to the derivation of the

correlation functions of the model.

Acknowledgements

We are grateful to N.M. Bogoliubov, A. Cappelli, V. Tognetti and M.B. Zvonarev

for useful discussions. We acknowledge financial support from MIUR COFIN 2000 and

INFN (Iniziativa Specifica FI11). This work was been partially done within the European

Community network “EUCLID” (HPRN-CT-2002-00325). One of us (A.P.) is supported

in part by Russian Foundation for Basic Research, under Grant No. 01-01-01045, and

by the program “Mathematical Methods in Nonlinear Dynamics” of Russian Academy

of Sciences. F.C. is pleased to acknowledge warm hospitality from Euler International

Mathematical Institute and Steklov Institute of Mathematics at St. Petersburg. A.P.

is grateful to INFN, Sezione di Firenze, and to the Physics Department of Florence

University for kind hospitality and support that made this collaboration possible.

References

[1] V.E. Korepin, Commun. Math. Phys. 86 (1982) 391.

[2] A.G. Izergin, Sov. Phys. Dokl. 32 (1987) 878.

[3] E.H. Lieb, Phys. Rev. 18 (1967) 1046; 19 (1967) 108.

[4] B. Sutherland, Phys. Rev. 19 (1967) 103.

[5] R.J. Baxter, Exactly Solved Models in Statistical Mechanics Academic Press, London

(1982).

[6] D. Zeilberger, New York J. Math. 2 (1996) 59.

7



[7] G. Kuperberg, Intern. Math. Res. Notices 1996 (1996) 139.

[8] N. Elkies, G. Kuperberg, M. Larsen, J. Propp, J. Algebraic Combin. 1 (1992) 111;

219.

[9] V.E. Korepin, P. Zinn-Justin, J. Phys A: Math. Gen. 33 (2000) 7053.

[10] P. Zinn-Justin, Phys. Rev. E 62 (2000) 3411.

[11] W. Jockush, J. Propp, P. Shor, Random Domino Tilings and the Arctic Circle

Theorem, preprint math.CO/9801068.

[12] A.G. Izergin, D.A. Coker, V.E. Korepin, J. Phys A: Math. Gen. 25 (1992) 4315.

[13] N.M. Bogoliubov, A.V. Kitaev, M.B. Zvonarev, Phys. Rev. E 65 (2002) 026126.

[14] N.M. Bogoliubov, A.G. Pronko, M.B. Zvonarev, J. Phys. A: Math. Gen. 35 (2002)

5525.

[15] N.A. Slavnov, Zap. Nauch. Sem. POMI 269 (2000) 308; preprint cond-mat/0005298.

[16] V.E. Korepin, A.G. Izergin, N.M. Bogoliubov, Quantum Inverse Scattering Method

and Correlation Functions, Cambridge University Press (1992).

[17] A. Borodin, Nucl. Phys. B536 (1999) 704.

[18] R. Koekoek, R.F. Swarttouw, The Askey-scheme of Hypergeometric Orthogonal

Polynomials and its q-analogue, Report 98-17, TU Delft.
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